The tert-butyl chloride in ethanol would surely react faster than the solvolysis of 1-chloro-2,2-dimethyl propane. It is known that both reactions are under the SN2 category so it would be hard for these reactions to occur. However, SN1 reactions are possible because of the ethanol which is a polar solvent. Both would form carbocations but tert-butyl chloride forms a more stable carbocation while the 1-chloro-2,2-dimethyl propane forms a primary carbocation only.
Answer:
magnesium + hydrochloric acid → hydrogen gas + magnesium chloride
explanation:
the nitrogen in HNO3 is in the +5 oxidation state and is easily reduced. The reduction would result in the oxidation of the hydrogen gas, forming the water once again.The sulfur in H2SO4 is also in its highest oxidation state, +6.
<em>Hope</em><em> this</em><em> helps</em><em> </em><em>:</em><em>)</em>
Elements are a one of a class of substances that cannot be seperwted into simpler substances by chemicalk means.
Compounds is a substance formed when two or more chemical elements are chemically bonded together.
Relation: When two elements or more are formed chemically together its called a compound without elements there won't be compounds and without compounds there won't be elements.
Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ