I would expect it to be slightly basic.
The northward components of the resultant displacement is 40.96 m and the westward components of the resultant displacement of the bird from its nest is 28.68 m.
<h3>
Displacement of the bird</h3>
The displacement of the bird is the change in the position of the bird.
<h3>Vertical component of the bird's displacement </h3>
Vy₁ = -25 m x sin(55)
Vy₁ = -20.48 m
Vy₂ = 75 m x sin(55)
Vy₂ = 61.44 m
Total vertical displacement = 61.44 m - 20.48 m = 40.96 m
<h3>Horizontal component of the bird's displacement </h3>
Vx₁ = -25 m x cos(55)
Vx₁ = -14.34 m
Vx₂ = 75 m x cos(55)
Vx₂ = 43.02 m
Total horizontal displacement = 43.02 m - 14.34 m = 28.68 m
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
0.004 of something added to 0.12508 of the same thing
adds up to 0.12908 of it.
The thing could be a glass of water, a sheet of paper,
a pound of ground beef, a gallon of gas, or a snowball.
In this problem, it just happens to be a dm.
Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
E. all of the above
An umbrella tends to move upward on a windy day because _<span>A. buoyancy increases with increasing wind speed </span>
<span>B. air gets trapped under the umbrella and pushes it up </span>
<span>C. the wind pushes it up </span>
<span>D. a low-pressure area is created on top of the umbrella </span>