Answer:
Surface currents are controlled by three factors: global winds, the Coriolis effect, and continental deflections. surface create surface currents in the ocean. Different winds cause currents to flow in different directions. objects from a straight path due to the Earth's rotation.
Explanation:
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Answer:
Mechanical waves need matter to transfer energy while electromagnetic waves do not. ... Waves change direction when they move from one material into another (matter) through the process of refraction. The wave will change direction when the speed of the wave changes.
<span>there is no horizontal displacement if he went straight up
straight up means vertical, so his vertical displacment is 20 m</span>
To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>