Answer: 2.80 N/C
Explanation: In order to calculate the electric firld inside the solid cylinder
non conductor we have to use the Gaussian law,
∫E.ds=Q inside/ε0
E*2πrL=ρ Volume of the Gaussian surface/ε0
E*2πrL= a*r^2 π* r^2* L/ε0
E=a*r^3/(2*ε0)
E=6.2 * (0.002)^3/ (2*8.85*10^-12)= 2.80 N/C
A
Because all living things have living matter
The characteristics of the speed of the traveling waves allows to find the result for the tension in the string is:
T = 10 N
The speed of a wave on a string is given by the relationship.
v =
Where v es the velocty, t is the tension ang μ is the lineal density.
They indicate that the length of the string is L = 2.28 m and the pulse makes 4 trips in a time of t = 0.849 s, since the speed of the pulse in the string is constant, we can use the uniform motion ratio, where the distance traveled e 4 L
v =
v =
v =
v = 10.7 m / s
Let's find the linear density of the string, which is the length of the mass divided by its mass.
μ =
μ = 8.77 10⁻² kg / m
The tension is:
T = v² μ
Let's calculate
T = 10.7² 8.77 10⁻²
T = 1 0 N
In conclusion using the characteristics of the velocity of the traveling waves we can find the result for the tension in the string is:
T = 10 N
Learn more here: brainly.com/question/12545155
Try this solution:
if given m=0.15 kg; t₁=20 °C; t₂=100 °C; c=4190 J/(kg*C); q=226*10⁴ J/kg., then
Q=Q₁+Q₂,
where Q₁=cm(t₂-t₁) and Q₂=q*m.
Finally,
Q=cm(t₂-t₁)+qm;
Q=4190*0.15*80+2240000*0.15=386280 J=<u>386.28 kJ</u>.
Answer:
A beat with the frequency of 10Hz.
Explanation:
The frequencies from the tuning fork and guitar will cancel each other.
The frequency of tuning fork = 340Hz
The frequency of guitar string= 350Hz
The offset = 350Hz - 340Hz = 10Hz
A 10Hz frequency sound is still heard.