1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
6

Is ADa is civil rights

Physics
1 answer:
Travka [436]3 years ago
5 0

Yes the ADa is a civil right law.

You might be interested in
Which of the following equations is balanced correctly? A. 3 H2O → H2 + 3 O2 B. Cl2 + 2 KBr → KCl + Br2 C. 2 C2H2 + 5 O2 → 4 CO2
posledela
A. the carbons are unbalanced B. the hydrogens are unbalanced. D. the chlorines are unbalanced. That leaves C. to be correctly balanced.
8 0
3 years ago
Read 2 more answers
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
......................
Ierofanga [76]
Don’t trust those links they usually pull up your IP
4 0
3 years ago
Simone is walking her dog on a leash. The dog is pulling with force of 34 N to the right and simone is pulling backward with a f
e-lub [12.9K]

I do not understand the full question, however if you are wondering which way Simone and the dog will go, they will go right because the force of 34 N from the dog is higher than the force of 16 N from Simone.

4 0
3 years ago
A wave of wavelength 0.3 m travels 900 m in 3.0 s. Calculate its frequency.
zzz [600]

Answer:

1000 Hz

Explanation:

<em>The frequency would be 1000 Hz.</em>

The frequency, wavelength, and speed of a wave are related by the equation:

<em>v = fλ ..................(1)</em>

where v = speed of the wave, f = frequency of the wave, and λ = wavelength of the wave.

Making f the subject of the formula:

<em>f = v/λ.........................(2)</em>

Also, speed (v) = distance/time.

From the question, distance = 900 m, time = 3.0 s

Hence, v = 900/3.0 = 300 m/s

Substitute v = 300 and λ = 0.3  into equation (2):

f = 300/0.3 = 1000 Hz

6 0
3 years ago
Other questions:
  • The earth is made mostly of metals and rocks. Where did this material come from? It was made by nuclear fission of uranium and o
    5·1 answer
  • If an automobile engine delivers 42.0 hp of power, how much time will it take for the engine to do 6.20 â 105 j of work? (hint:
    5·1 answer
  • A 1,790 W toaster, a 1,480 W electric frying pan, and a 60 W lamp are plugged into the same outlet in a 15 A, 120 V circuit. (Th
    14·1 answer
  • A lightning bolt occurs when billions of protons are transferred at the same time. ____________________
    13·1 answer
  • A 92kg astronaut and a 1200kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, giving
    13·1 answer
  • Help please suffering
    5·1 answer
  • A round steel shaft is subjected to a concentrated moment M=1000 lbf.in at point B, which is located at distances a=8,b=9 in fro
    7·1 answer
  • What is a energy transformation when using a microwave to make popcorn?
    11·2 answers
  • A net force of 2070N acts on a car with a mass of 1350 kg. What is the acceleration of the car?
    8·1 answer
  • What is forward and downward speed
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!