Answer:
The direction will be
and the distance 250.75km.
Explanation:
Let's say A is the displacement vector which represents the first 170km and B the one for the next 230km. Then the components of these vector will be:

The vector which point from the origin to the final position of the plane will be R=A+B. We sum components on <em>x </em>and <em>y </em>independetly (vector property):


If
is the direction of R then:
⇒
⇒
.
The distance will be given by the magnitud of the vector R:
⇒
.
Answer:
a
When 

b
When 
Explanation:
From the question we are told that
The radius is R
The current is I
The distance from the center
Ampere's law is mathematically represented as
![B[2 \pi r] = \mu_o * \frac{I r^2 }{R^2 }](https://tex.z-dn.net/?f=B%5B2%20%5Cpi%20r%5D%20%20%3D%20%20%5Cmu_o%20%20%2A%20%20%5Cfrac%7BI%20r%5E2%20%20%7D%7BR%5E2%20%7D)

When 
=> 
But when 
![B = [\frac{\mu_o * I }{ 2 \pi R^2} ]* r](https://tex.z-dn.net/?f=B%20%3D%20%20%5B%5Cfrac%7B%5Cmu_o%20%2A%20%20I%20%7D%7B%202%20%5Cpi%20R%5E2%7D%20%5D%2A%20r)
Answer: the correct answer is (B) He did not know that interstellar dust made it hard from him to see a large part of the Milky Way's disk.
Explanation:
We live in a dusty Galaxy. Because interstellar dust absorbs the light from stars, Herschel could see only those stars within about 6000 light-years of the Sun.
It's Endorphins. That's a pain killer produced by the brain.
Answer:
an elevator stopped on the third floor a basketball shot into a hoop a sled sliding down a snowy hill a tow truck pulling a car out of a ditch