Answer:
817.5 Pa
Explanation:
From Bernoulli's equation, considering thst there is no height difference then
P1+½d(v1)²=P2+½d(v2)²
P1-P2=½d(v2²-v1²)
∆P=½d(v2²-v1²)
Where P represent pressure, d is density and v is velocity. Subscripts 1 and 2 represent inside and outside. ∆P is tge change in pressure
Given the speed at roof top as 128 km/h, we convert it to m/s as follows
128*1000/3600=35.555555555555=35.56 m/s
Velocity at the bottom of roof is 0 m/s
Density is given as 1.293 kg/m³
∆P=½*1.293*(35.56²-0)=817.5 Pa
The magnetic part using the Lorentz force is: F = q v x
B,
where v and B are vectors and v x B is the vector cross product.
Magnitude of the force: F = q v B sin(α)
So, sin(α) = F/( e v B), with e the proton charge.
This will give you a value for sin(α), and two potentials
for its opposite.
You will now look for:
sin(α) = 7.40 10^-13/( 1.60 10^-19 * 5 10^6 * 1.78)
= 0.520
So either sin(α) = 0.502 or sin(α) = -0.502
The 1st α = 30.1 degrees or α = 150 degrees.
The 2nd α = 210 degrees or α = 330 degrees.
So we can say that 30.1 degrees and 330 degrees would be minimum and biggest on [0,360]
Answer:
We know that, the kinetic energy
ke= \frac{1 }{2} m{v}^{2}
and we also know that the acceleration causes the speed's value to be doubled
Hence, v becomes 2v
When 2v is squared, it becomes 4v^2. After substituting this value in the equation above and comparing it,
We can conclude that the Kinetic Energy has increased
by a factor of 4
Answer: Period = 0.2 seconds; frequency = 5Hz
Explanation:
Number of oscillations = 50
Time required = 10 seconds
Period (T) = ?
Frequency of the oscillations (F) = ?
A) Recall that frequency is the number of oscillations that the mass spring system completes in one second.
i.e Frequency = (Number of oscillations / time taken)
F = 50/10 = 5Hz
B) Period, T is inversely proportional to frequency. i.e Period = 1/Frequency
T = 1/5Hz
T = 0.2 seconds
Thus, the the period and frequency of the oscillations are 0.2 seconds and 5Hz respectively.