1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
3 years ago
12

What are the products of linear electron flow during the light reactions of photosynthesis?

Physics
1 answer:
Katena32 [7]3 years ago
7 0

Answer:

NADPH and ATP

Explanation:

In the clear stage the light that "hits" chlorophyll excites an electron to a higher energy level. In a series of reactions, energy is converted (throughout an electron transport process) into ATP and NADPH. Water breaks down in the process releasing oxygen as a secondary product of the reaction. ATP and NADPH are used to make the C-C bonds in the dark stage.

Photophosphorylation is the process of converting the energy of the electron excited by light into a pyrophosphate bond of an ADP molecule. This occurs when water electrons are excited by light in the presence of P680. The energy transfer is similar to the chemosmotic electron transport that occurs in the mitochondria.

Light energy causes the removal of an electron from a P680 molecule that is part of Photosystem II, the electron is transferred to an acceptor molecule (primary acceptor), and then passes downhill to Photosystem I through a conveyor chain of electrons The P680 requires an electron that is taken from the water by breaking it into H + ions and O-2 ions. These O-2 ions combine to form O2 that is released into the atmosphere.

The light acts on the P700 molecule of Photosystem I, causing an electron to be raised to a higher potential. This electron is accepted by a primary acceptor (different from the one associated with Photosystem II).

The electron goes through a series of redox reactions again, and finally combines with NADP + and H + to form NADPH, a carrier of H needed in the independent phase of light.

Electron of photosystem II replaces the excited electron of the P700 molecule.

There is therefore a continuous flow of electrons (non-cyclic) from water to NADPH, which is used for carbon fixation.

Cyclic electron flow occurs in some eukaryotes and in photosynthetic bacteria. NADPH does not occur, only ATP. This also occurs when the cell requires additional ATP, or when there is no NADP + to reduce it to NADPH.

In Photosystem II, the "pumping" of H ions into the thylakoids (from the stroma of the chloroplast) and the conversion of ADP + P to ATP is motorized by an electron gradient established in the thylakoid membrane.

You might be interested in
A sound wave traveling at 343 m/s is emitted by the foghorn of a tugboat. an echo is heard 2.80 s later. how far away is the ref
Nostrana [21]
The echo is heard 2.80 s later, this means this is the time the sound takes to travel to the reflecting object and then back to us. So, during this time, the sound wave has covered the distance L between us and the object twice:
S=2L
The speed of the sound wave is: v=343 m/s, and since it is moving by uniform motion, we can find the distance covered by the wave using
S=vt=(343 m/s)(2.80 s)=960 m
And we said this corresponds to twice the distance between us and the reflecting object, so:
L= \frac{S}{2} = \frac{960 m}{2} =480 m
so, the object is 480 meters away.
3 0
3 years ago
The tape in a videotape cassette has a total
xxMikexx [17]

Answer:

w=19.76 \ rad/s

Explanation:

<u>Circular Motion </u>

Suppose there is an object describing a circle of radius r around a fixed point. If the relation between the angle of rotation by the time taken is constant, then the angular speed is also constant. If that relation increases or decreases at a constant rate, the angular speed is given by:

w=w_o+\alpha \ t

Where \alpha is the angular acceleration and t is the time. If the object was instantly released from the circular path, it would have a tangent speed of:

\displaystyle v_t=w.r

We have two reels: one loaded with the tape to play and the other one empty and starting to fill with tape. They both rotate at different angular speeds, one is increasing and the other is decreasing as the tape goes from one to the other. We'll assume the tangent speed is constant for both (so the tape can play correctly). Let's call w_1 the angular speed of the loaded reel and w_2 that from the empty reel. We have

w_1=w_{o1}+\alpha_1 \ t

w_2=w_{o2}+\alpha_2 \ t

If r_f=35\ mm=0.035\ m is the radius of the reel when it's full of tape, the angular speed for the loaded reel is computed by

\displaystyle w_{01}=\frac{v_t}{r_f}

The tangent speed is computed by knowing the length of the tape and the time needed to fully play it.

t=1.8\ h=1.8*3600=6480\ sec

\displaystyle v_t=\frac{x}{t}=\frac{249\ m}{6480\ sec}=0.0384 \ m/s

\displaystyle w_{01}=\frac{0.0384}{0.035}=1,098 \ rad/s

If r_e=10\ mm=0.001\ m is the radius of the reel when it's empty, the angular speed for the empty reel is computed by

\displaystyle w_{02}=\frac{0.0384}{0.001}=38.426 \ rad/s

The full reel goes from w_{01} to w_{02} in 6480 seconds, so we can compute the angular acceleration:

\displaystyle \alpha_1=\frac{w_{02}-w_{01}}{6480}

\displaystyle \alpha_1=\frac{38.426-1.098}{6480}=0.00576 \ rad/sec^2

The empty reel goes from w_{02} to w_{01} in 6480 seconds, so we can compute the angular acceleration:

\displaystyle \alpha_2=\frac{1.098-38.426}{6480}=-0.00576 \ rad/sec^2

So the equations for both reels are

w_1=1.098+0.00576 \ t

w_2=38.426-0.00576 \ t

They will be the same when

1.098+0.00576 \ t=38.426-0.00576 \ t

Solving for t

\displaystyle t=\frac{38.426-1.098}{0.0115}

t=3240 \ sec

The common angular speed is

w_1=1.098+0.00576 \ 3240=19.76 \ rad/s

w_2=38.426-0.00576 \ 3240=19.76 \ rad/s

They both result in the same, as expected

\boxed{w=19.76 \ rad/s}

6 0
3 years ago
A circuit with which components has a current with the greatest voltage?
Ymorist [56]
The components in a circuit don't determine the voltages in it.
The voltages are all determined by the battery or power supply
that energizes the circuit.
7 0
3 years ago
Read 2 more answers
I’ll give brainliest if it’s correct ;-;z
BlackZzzverrR [31]

Explanation:

what is the question? could you pls provide it

6 0
2 years ago
A gang of robbers is escaping across city roofs at night. They come to the edge of one building and need to drop down to their g
REY [17]

Answer:

a) They will hit the ground with a speed of 19.6 m/s.

b) They are at a height of 20 m.

c) It is not a safe jump.

Explanation:

Hi there!

a) The equations of height and velocity in function of time of a free falling body are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the object at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering downward as negative direction).

v = velocity of the object at time t.

Using the equation of velocity, let's find the velocity at which they will hit the ground. The pebble is dropped (initial velocity = 0) and it takes 2 s to reach the ground:

v = v0 + g · t     (v0 = 0)

v = g · t

v = -9.8 m/s² · 2.0 s

v = -19.6 m/s

They will hit the ground with a speed of 19.6 m/s.

b)Now, we have to use the equation of height:

h = h0 + v0 · t + 1/2 · g · t²

If we place the origin of the frame of reference on the ground, we have to find the initial height (h0) knowing that at t = 2.0 s, h = 0 m

0 m = h0 - 1/2 · 9.8 m/s² · (2.0 s)²

h0 = 1/2 · 9.8 m/s² · (2.0 s)²

h0 = 20 m

They are at a height of 20 m.

c)According to a NASA paper (Issues on Human Acceleration Tolerance After Long-Duration Space Flights, figure 10), if you fall with a vertical velocity greater than 17 m/s it is unlikely that you will survive. So, it is not a safe jump.  

3 0
3 years ago
Other questions:
  • The density of a liquid could be found by using
    6·1 answer
  • a stationary police officer directs radio waves emitted by a radar gun at a vehicle toward the officer. Compared to the emitted
    14·1 answer
  • At an air show, Julia saw a fighter jet fly by. Three seconds later she heard the sonic boom of the sound barrier being broken.
    11·2 answers
  • Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed
    13·2 answers
  • I need help on this please
    8·1 answer
  • Give three practical uses of electromagnets
    9·1 answer
  • The velocity of an object is it’s speed and __ of motion .
    5·2 answers
  • A 3.00-- kg rifle fires a 0.00500 m/s. Which force is greater in magnitude: (i) the force that the kg bullet at a speed of 300 r
    5·1 answer
  • When two bodies at different temperatures are placed in thermal contact with each other, heat flows from the body at higher temp
    9·1 answer
  • Which of the following elements is more reactive than the others
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!