Answer:
No. Twice as much work will give the ball twice as much kinetic energy. But since KE is proportional to the speed squared, the speed will be
times larger.
Explanation:
The work done on the ball is equal to the kinetic energy gained by the ball:

So when the work done doubles, the kinetic energy doubles as well:

However, the kinetic energy is given by

where
m is the mass of the ball
v is its speed
We see that the kinetic energy is proportional to the square of the speed,
. We can rewrite the last equation as

which also means

If the work is doubled,

So the new speed is

So, the speed is
times larger.
Observation– the process of using the five senses to gather information
(c) is the correct choice.
El Nino (a), Earth's orbit (b), and solar energy output (d) are all "natural" occurrences. You can't do a thing aboutum.
Fossil fuels ... or, more precisely, humanity's use of vast quantities of fossil fuels as a convenient source of huge quantities of energy ... and the subsequent increase of Carbon Dioxide in the planet's atmosphere, is not the result of "natural" processes. It's the result of human efforts to <em>alter and control</em> Nature, through <em>artificial</em> processes.
Answer:a) P = Po + rho×h×g
b) P = 5.4 × 10^9 pa
c) F = P/A = (Po + rho×h×g)/A
d) 1.174×10^11N
Explanation: Using the formula
P = Po + rho×h×g
P = 1.0 x 10^5 + 1000 × 5.5 × 9.81
P = 5.4 × 10^9pa
The magnitude of the force exerted by water on the top of the person's head F at the depth h in terms of P
F = P/A = (Po + rho×h×g)/A
Using the above formula
Where A = 0.046m^2
F = P/ A = 5.4×10^9/0.046
F = 1.174×10^11N
Explanation:
Since the balloon is not accelerating means that the net force on the balloon is zero. This implies that the weight of balloon must be equal to the buoyant force on balloon.
Hence, the buoyant force equals the weight of air displaced by the balloon, also 20,000 N.
Weight of the air displaced = density of air × volume
The density of air at 1 atm pressure and 20º C is 1.2 kg/m³
the volume V = 20,000/(1.2×9.8) = 1700 m³