Answer:
W ’= 21.78 kg
Explanation:
The expression for weight is
W = m g
let's look for the acceleration of gravity with the universal law of gravitation
F = G m M / r2
F = m (G M / r2)
without comparing the two equations
g’= G M / r2
in that case M = 2 Mo and r = 3 ro
where mo and ro are the mass and radius of the earth
we substitute
g ’= G 2Mo / (3r₀) 2
G ’= 2/9 G Mo / r₀²
g ’= 2/9 g
the weight of the body on this planet is
W ’= m g’
W ’= m 2/9 g
let's calculate
W ’= 2/9 10 9.8
W ’= 21.78 kg
Answer:
When an object is immersed in water. it is pulled downwards due to gravitational pull of earth. Water exerts upward force on the object. This makes object rise up. This upward force is called buoyancy or upthrust.
Answer:
a = 6.53 m/s^2
v = 11.5689 m/s
Explanation:
Given data:
engine power is 217 hp
70 % power reached to wheel
total mass ( car + driver) is 1530 kg
from the data given
2/3 rd of weight is over the wheel
w = 2/3rd mg
maximum force

we know that F = ma


the new power is 


solving for speed v

![v = 0.7 \frac{217 [\frac{746 w}{1 hp}]}{1500 \times 6.53}](https://tex.z-dn.net/?f=v%20%3D%200.7%20%5Cfrac%7B217%20%5B%5Cfrac%7B746%20w%7D%7B1%20hp%7D%5D%7D%7B1500%20%5Ctimes%206.53%7D)
v = 11.5689 m/s
Responder:
39200 J
Explicación:
Dado:
Masa de Tamara (m) = 50 kg
Altura a la que se encuentra Tamara (h) = 80 m
Aceleración debido a la gravedad (g) = 9.8 m / s²
La energía potencial de un objeto de masa 'm' ubicada a una altura 'h' sobre el suelo se da como:

Ahora, conecte los valores dados y resuelva la energía potencial. Esto da,

Por lo tanto, la energía potencial de Tamara ubicada a una altura de 80 m es 39200 J.
Answer:
dβ = 70. 77 dβ
Explanation:
The intensity of sound in decibels is
dβ = 10 log I/I₀
let's look for the intensity of this signal
I / I₀ = 10 dβ/10
I / I₀ = 3.981 10⁶
the threshold intensity of sound for humans is I₀ = 1 10⁻¹² W / m²
I = 3.981 10 ⁶ 1 10⁻¹²
I = 3,981 10⁻⁶ W / m²
It is indicated that 3 cornets are placed in the circle, for which total intensity is
I_total - 3 I
I_total = 3 3,981 10⁻⁶
I_total = 11,943 10⁻⁶ W / m²
let's reduce to decibels
dβ = 10 log (11,943 10⁻⁶/1 10⁻¹²)
dβ = 10 7.077
dβ = 70. 77 dβ