Answer:
mechanical energy
Explanation:
Mechanical energy is the combination of both potential energy and kinetic
Mechanical energy can be divided as
1)kinetic energy, this energy vis regarded as the energy of motion
2) potential energy which is the stored energy of position.
Mechanical energy reffered to as
motion energy this energy is responsible for the movement of an object based on its position as well as motion.
Mechanical energy= U + K
Where U= potential energy
K= Kinectic energy
As the tire is sitting on top of a ramp, it posses "potential energy" as it is released and rolls down the ramp the potential is converted to Kinectic energy
Answer:
ω = 3.61 rad/sec
Explanation:
Firstly, we should know that the bug will not slip if friction can provide sufficient opposing force.
μmg = mv^2/r = mω^2r
Thus;
μg = ω^2r
ω^2 = μg/r
ω = √(μg/r)
ω = √(0.321 * 9.8)/0.241
ω = √(13.05)
= 3.61 rad/sec
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.

Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost = 
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude= 
Solving for v, we get

The person will be going at a speed of 7.67 m/s².