The body continuously tries to maintain homeostasis. Therefore, the digestive system eliminate waste from your body along as providing the body with the nutrients needed. It balances out your every meal.
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
Answer:
C.As the two objects touch, thermal energy flows as heat from the warmer block to the colder block until particles in both blocks move at the same rate and reach the same temperature.
Explanation:
Heat is the transfer of thermal energy from an object at higher temperature to an object at colder temperature.
The temperature of an object is a measure of how fast the particles in the object move: the higher its temperature, the faster the particles move, the higher the average kinetic energy of the particles in the object. As a result, the particles of the object at higher temperature tend to transfer more energy (called thermal energy) to the particles of the object at colder temperature by colliding with them: this process continues until the particles of the colder object reach the same average kinetic energy as the particles of the warmer object, and this means that the two objects have reached the same temperature.
b. 460.8 m/s
Explanation:
The relationship between the speed of the wave along the string, the length of the string and the frequency of the note is

where v is the speed of the wave, L is the length of the string and f is the frequency. Re-arranging the equation and substituting the data of the problem (L=0.90 m and f=256 Hz), we can find v:

c. 18,000 m
Explanation:
The relationship between speed of the wave, distance travelled and time taken is

where
v = 6,000 m/s is the speed of the wave
d = ? is the distance travelled
t = 3 s is the time taken
Re-arranging the formula and substituting the numbers into it, we find:
