Answer:
The wheel spins for 11.43s. The number cannot be determined.
Explanation:
We know that initial velocity is 124.4 rpm = 13.027137522 rad/s, acceleration is -1.14 rad/s^2, and final velocity is assumed to be 0 rad/s. We are asked to find t and displacement. We use the equation
where
,
,
, and
.
Rearrange the equation to obtain
. Plug in the numbers and solve to obtain
.
The number of the wheel cannot be determined as we do not know the placement of numbers on the wheel.
Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
Explanation:
Below is an attachment containing the solution.
Wood Rots is the correct answer, as the wood begins to die
Answer:
B1. Pascal's law is a principal in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid that the same change occur everywhere. 2 applications of Pascal's law are hydraulic lifts, hydraulic jacks, hydraulic hydraulic brakes ,hydraulic pumps. mark me as a braintalist list plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz