Answer:

Explanation:
Given:
Length of a rope,
Position of Canary on the rope from one end, 
Position of Grackle on the rope from another end, 
Tension in the rope, 
linear mass distribution on the rope, 
We have for the speed of wave on the string:



<em>For canary to be undisturbed we need a node at this location.</em>
<em>Also, at the end close to Canary there must be a node to avoid any change in pattern of vibration.</em>
So,
the distance between Canary and the closer end must be equal to half the wavelength.


∴Wavelength of wave to be produced = 20 m. This will give us nodes at the multiples of 10 and anti-nodes at the multiples of 5.
Now, frequency:



The time period of a simple pendulum depends upon its length and value of'g'at any place. The period of the pendulum of fixed length
D. Redefine the machine’s system boundaries.
The Law of Conservation of Energy states that energy can't be created not destroyed. Energy, however, can be changed from one form to another. The law applies to isolated systems only. By redefining and expanding the system (including all factors affecting it) , the machine's ability to do work should improve.
Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²