1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
7

Which of the following best describes the velocity of an object?

Physics
2 answers:
kirza4 [7]3 years ago
8 0

Answer:

Hello There!!

Explanation:

The answer iz C.30 m/s east because it has to contain the location the number and all the information to describe the velocity as the best.

hope this helps,have a great day!!

~Pinky~

Svetllana [295]3 years ago
5 0

Answer:

27

Explanation:

You might be interested in
Acid compounds contain a.Oxygen B. Ion c. Hydrogen
valentina_108 [34]

Answer:

c hydrogen

Explanation:

8 0
3 years ago
Read 2 more answers
The process of _____________ is modeled in the plant cell diagrams seen here. A) osmosis B) tonicity C) active transport D) faci
Andrej [43]

dAnswer:

Explanation:

5 0
3 years ago
Read 2 more answers
Select the correct answer. Which of Newton's laws explains why your hands get red when you press them hard against a wall? A. Ne
STatiana [176]

Answer:

D newton third law

Explanation:

good luck

8 0
2 years ago
In a series RLC resonance circuit, the resonance frequency f0 = 700 kHz. The resistor R = 10 Ohm. The specified bandwidth (BW) s
sladkih [1.3K]

Answer:

  • quality factor (Q) = 69.99
  • inductor = 1.591 x 10⁻⁴ H
  • capacitor = 3.248 x 10⁻¹⁰ F

Explanation:

Given;

resonance frequency (F₀) = 700 kHz

resistor, R =  10 Ohm

bandwidth (BW) = 10 kHz

bandwidth (BW)  = \frac{R}{2\pi L}

BW = \frac{R}{2\pi L}

make L (inductor) the subject of the formula

L = \frac{R}{2\pi *BW}  =  \frac{10}{2\pi *10,000} =1.591 *10^{-4} \ H = \ 0.1591\ mH

F_o =\frac{1}{2\pi\sqrt{LC} } \\\\\sqrt{LC} = \frac{1}{2\pi F_o} \\\\LC = \frac{1}{4\pi ^2F_o^2}= \frac{1}{4\pi ^2(700,000)^2} = 5.168*10^{-14}

make C (capacitor)  the subject of the formula

C = \frac{5.168*10^{-14}}{1.591*10^{-4}} = 3.248*10^{-10} \ F = \ 3.248*10^{-4} \ \mu F

quality factor (Q) = \frac{1}{R} \sqrt{\frac{L}{C}} \ = \frac{1}{10} \sqrt{\frac{1.591*10^{-4}}{3.248*10^{-10}}}=69.99

quality factor (Q) =  69.99

5 0
3 years ago
A heat engine with 0.300 mol of a monatomic ideal gas initially fills a 1000 cm3 cylinder at 500 K . The gas goes through the fo
LuckyWell [14K]

Complete Question:

A heat engine with 0.300 mol of a monatomic ideal gas initially fills a 1000 cm3 cylinder at 500 K . The gas goes through the following closed cycle: - Isothermal expansion to 5000 cm3. - Isochoric cooling to 400 K . - Isothermal compression to 1000 cm3. - Isochoric heating to 500 K .

a) what is the work for one cycle

b) what is the thermal efficiency

Answer:

a) Work done for 1 cycle = 402.13

b) Thermal efficiency = 20%

Explanation:

Number of moles, n = 0.300 mol

Initial Volume, V₁ = 1000 cm³

Temperature, T = 500 K

Isothermal expansion to 5000 cm³

Final volume, V₂ = 5000 cm³

R = 8.314 J/ mol.K

Work done, W = nRT ln(V₂/V₁)

W = (0.3 * 8.314 * 500) * ln(5000/1000)

W = 1247.1 * ln5

W₁ = 2007.13 J

Isochoric cooling

In an Isochoric process, volume is constant i.e. V₂ = V₁ = V

W = nRT ln(V/V)

But  ln(V/V) = ln 1 = 0

Work done, W₂ = 0 Joules

Isothermal Compression to 1000 cm³

V₂ = 1000 cm³

V₁ = 5000 cm³

W = nRT ln(V₂/V₁)

W = 0.3 * 8.314 * 400 ln(1000/5000)

W₃ = -1605 J

Isochoric heating to 500 K

Since there is no change in volume, no work is done

W₄ = 0 J

a) Work done for 1 cycle

W = W₁ + W₂ + W₃ + W₄

W = 2007.13 + 0 + 0 -1605+0

W = 402.13 Joules

b) Thermal efficiency

Thermal efficiency = (Net workdone for 1 cycle)/(Heat absorbed)

Heat absorbed = Work done due to thermal expansion = 2007.13 J

Thermal efficiency = 402.13/2007.13

Thermal efficiency = 0.2

Thermal efficiency = 0.2 * 100% = 20 %

3 0
3 years ago
Other questions:
  • Why are the outlets in homes never wired in series? What problems might this present?
    9·2 answers
  • A 0.21 kg baseball moving at +25 m/s is slowed to a stop by a catcher who exerts a constant force of −360 N. a) How long does it
    7·1 answer
  • What is the rhyme scheme in Emily Dickinson’s poem, “Hope is the thing with feathers”?
    11·1 answer
  • Are Roots or Plant Making Cracks in The Concrete Chemical or Weathering?
    9·1 answer
  • PLZ HELP
    9·1 answer
  • Which of the following should maintain the appropriate temperature and humidity levels and provide closed-loop recirculating: a.
    7·1 answer
  • Which statement explains what happens to older crust during seafloor spreading?
    11·1 answer
  • Which of the following are true? Select all that apply. The net electric field at any location inside a block of copper is zero
    7·1 answer
  • A. 1 and 2 > 3 and 4 = 4 and 5
    13·1 answer
  • A ball accelerate downward at 9.8 m/s2 with 1.7 of force. What is the mass of the ball?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!