Answer:
negative at first.
Explanation:
It's important to disconnect the negative side at first, otherwise you can cause an electrical short if positive is removed first.
Answer:
The distance of fly travel is 115.06 m.
Explanation:
Given that,
Distance = 115 mm
Speed = 1.10 m/s
Speed of fly = 2.20 m/s
We need to calculate the relative speed
Using formula of relative speed

Put the value into the formula


We need to calculate the time for the two steamrollers to meet each other
Using formula of time

Put the value into the formula


We need to calculate the distance of fly travel
Using formula of distance

Put the value into the formula


Hence, The distance of fly travel is 115.06 m.
The organism may become ill or die
Let R be radius of Earth with the amount of 6378 km h = height of satellite above Earth m = mass of satellite v = tangential velocity of satellite
Since gravitational force varies contrariwise with the square of the distance of separation, the value of g at altitude h will be 9.8*{[R/(R+h)]^2} = g'
So now gravity acceleration is g' and gravity is balanced by centripetal force mv^2/(R+h):
m*v^2/(R+h) = m*g' v = sqrt[g'*(R + h)]
Satellite A: h = 542 km so R+h = 6738 km = 6.920 e6 m g' = 9.8*(6378/6920)^2 = 8.32 m/sec^2 so v = sqrt(8.32*6.920e6) = 7587.79 m/s = 7.59 km/sec
Satellite B: h = 838 km so R+h = 7216 km = 7.216 e6 m g' = 9.8*(6378/7216)^2 = 8.66 m/sec^2 so v = sqrt(8.32*7.216e6) = 7748.36 m/s = 7.79 km/sec
Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't