Answer:
See explanation
Explanation:
When a beaker of ethanoic acid is placed in the refrigerator, its temperature drops and the vessel feels cool.
Now, when we mix ethanoic acid and sodium carbonate, an endothermic reaction occurs, fizzing is observed as carbon dioxide is given off and heat is lost to the surroundings causing the reaction vessel to feel cool to touch.
The difference between putting ethanoic acid in the refrigerator and adding sodium carbonate to the solution is that, in the former, no new substance is formed. The substance remains ethanoic acid when retrieved from the refrigerator. In the later case, new substances are formed. The substance is no more ethanoic acid because a chemical reaction has taken place.
Long wave I think is the correct answer
The complete question is shown in the image attached to this answer.
Answer:
C
Explanation:
Let us quickly remember that the EMF of a cell under non standard conditions in given by the Nernst equation.
This equation states that;
E = E°cell - 0.592/n log Q
Where
E = EMF under non standard conditions
E°cell= standard EMF of the cell
n = number of electrons transferred
Q = reaction quotient
If the reaction quotient is greater than 1 then cell potential is less than the standard cell potential.
The cell that generates the lowest cell potential is the cell depicted in option C because Q has the greatest positive value(Q<1).
Answer:
Solution A is a Weak Alkali, Solution B is a strong Acid.
Explanation:
At pH 10, the colour is blue, therefore it's a weak alkali.
At pH 1, the colour is red, therefore it's a strong Acid.
Answer:
0.534
Explanation:
Mole fraction can be calculated using the formula:
Mole fraction = number of moles of solute ÷ number of moles of solvent and solute (solution).
In this question, solute is dimethyl ether while the solvent is methanol.
Mole (n) = mass (M) ÷ molar mass (MM)
Mole of solute (dimethyl ether) = 148.5 ÷ 46.07
= 3.22moles.
Mole of solvent (methanol) = 90 ÷ 32.04
= 2.81moles.
Total moles of solute and solvent = 3.22 + 2.81 = 6.03moles.
Mole fraction of dimethyl ether = number of moles of dimethyl ether ÷ number of moles of solution (dimethyl ether + methanol)
Mole fraction = 3.22/6.03
= 0.534