Answer:
The acceleration is 8 m/s²
Explanation:
The given parameters are;
The initial velocity, u = 2 m/s
The final velocity, v = 6 m/s
The distance the acceleration took place, s = 2 m
The acceleration, a, can be found from the following kinematic equation;
v² = u² + 2·a·s
By substituting the values, we have;
6² = 2² + 2 × a × 2
6² - 2² = 2 × a × 2
32 = 4·a
a = 32/4 = 8 m/s²
The acceleration, a, of the given motion = 8 m/s².
Answer:

Explanation:
Net force by which man push the lawn mower is given as

now it is given that 37% of this force is vertically downwards
so we will have


now we also know that

here we have


Now work done by this force to move the lawn mower is given as



Answer:
a) 6.4 x 10^-12 cm^3
b) 17 x 10^-6 mm^2
Explanation
a). The shape is assumed to be spherical The volume = volume of a sphere = \frac{4}{3} \pi r^3
3
4
πr
3
V = \frac{4}{3}*3.142* 1.15^3
3
4
∗3.142∗1.15
3
= 6.3715 μm^3
1 μm^3 = 10^-12 cm^3
6.3715 μm^3 = 6.3715 x 10^-12 cm^3
==> 6.4 x 10^-12 cm^3
The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant

let's do it for this case:

the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator

so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
Answer:
I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.
I hope it helps
plz let me know if it is wrong or right.