1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zepler [3.9K]
3 years ago
14

A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,

initially at rest on a level surface. The bullet passes through the block and emerges with its speed reduced to 190 m/s. The block slides a distance of 72.0 cm along the surface from its initial position.
a. What is the coefficient of kinetic friction between block and surface?
b. What is the decrease in kinetic energy of the bullet?
c. What is the kinetic energy of the block at the instant after the bullet passes through it?
Physics
1 answer:
Maru [420]3 years ago
4 0

Answer:

a) Coefficient of kinetic friction between block and surface = 0.12

b) Decrease in kinetic energy of the bullet = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = 0.541 J

Explanation:

Given,

Mass of bullet = 4.00 g = 0.004 kg

Initial velocity of the bullet = 400 m/s

Mass of wooden block = 0.65 kg

Initial velocity of the wooden block = 0 m/s (since it was initially at rest)

Final velocity of the bullet = 190 m/s

Distance slid through by the block after the collision = d = 72.0 cm = 0.72 m

Let the velocity of the wooden block after collision be v

According to the law of conservation of momentum,

Momentum before collision = Momentum after collision

Momentum before collision = (Momentum of bullet before collision) + (Momentum of wooden block before collision)

Momentum of bullet before collision = (0.004×400) = 1.6 kgm/s

Momentum of wooden block before collision = (0.65)(0) = 0 kgm/s

Momentum after collision = (Momentum of bullet after collision) + (Momentum of wooden block after collision)

Momentum of bullet after collision = (0.004×190) = 0.76 kgm/s

Momentum of wooden block after collision = (0.65)(v) = (0.65v) kgm/s

Momentum balance gives

1.6 + 0 = 0.76 + 0.65v

0.65v = 1.6 - 0.76 = 0.84

v = (0.84/0.65)

v = 1.29 m/s

The velocity of the wooden block after collision = 1.29 m/s

To obtain the coefficient of kinetic friction between block and surface, we will apply the work-energy theorem.

The work-energy theorem states that the work done in moving the block from one point to another is equal to the change in kinetic energy of the block between these two points.

The points to consider are the point when the block starts moving (immediately after collision) and when it stops as a result of frictional force.

Mathematically,

W = ΔK.E

W = workdone by the frictional force in stopping the wooden block (since there is no other horizontal force acting on the block)

W = -F.d (minus sign because the frictional force opposes motion)

d = Distance slid through by the block after the collision = 0.72 m

F = Frictional force = μN

where N = normal reaction of the surface on the wooden block and it is equal to the weight of the block.

N = W = mg

F = μmg

W = - μmg × d = (-μ)(0.65)(9.8) × 0.72 = (-4.59μ) J

ΔK.E = (final kinetic energy of the block) - (initial kinetic energy of the block)

Final kinetic energy of the block = 0 J (since the block comes to a rest)

(Initial kinetic energy of the block) = (1/2)(0.65)(1.29²) = 0.541 J

ΔK.E = 0 - 0.541 = - 0.541 J

W = ΔK.E

-4.59μ = -0.541

μ = (0.541/4.59)

μ = 0.12

b) The decrease in kinetic energy of the bullet

(Decrease in kinetic energy of the bullet) = (Kinetic energy of the bullet before collision) - (Kinetic energy of the bullet after collision)

Kinetic energy of the bullet before collision = (1/2)(0.004)(400²) = 320 J

Kinetic energy of the bullet after collision = (1/2)(0.004)(190²) = 72.2 J

Decrease in kinetic energy of the bullet = 320 - 72.2 = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = (1/2)(0.65)(1.29²) = 0.541 J

Hope this Helps!!!

You might be interested in
What is one way to take advantage of creating even more kinetic energy on this particular technologically advanced field
ch4aika [34]

Incomplete question. However, I provided a brief about Kinetic energy generation.

<u>Explanation:</u>

Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.

It is often calculated using the formula E =  \frac{1}{2}MV^{2}

A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.

7 0
3 years ago
A box is being pushed but two stellar science students, one on each side of the box. Peter is pushing box with a force of 10 N t
Vitek1552 [10]

Answer:

Josh is the strongest

The net force is 5N towards right

5 0
3 years ago
A boat is travelling due west at a speed of 47 miles per hour. If the boat started off 170 miles directly north of the city of S
ankoles [38]
Answer is miles sir your welcome it was simple
6 0
3 years ago
Which<br> factors will increase the speed of a sound wave in the air?
Dafna11 [192]
A higher temperature, stiffer materials, and less dense materials increase the speed of sound.
7 0
4 years ago
If the center of mass passes outside the area of support of an object, what will happen to it?
defon

Answer:

If a vertical line extending down from an object's CG extends outside its area of support, the object will topple

Explanation:

We can understand better this situation using a diagram with the forces acting on it.

In the attached image we can see that when the gravity center is bouncing outside from the area of the pedestal, the object will be out of balance and will fall.

6 0
3 years ago
Other questions:
  • Is gravity considered a constant or field force?explain
    8·1 answer
  • What effect does dropping the sandbag out of the cart at the equilibrium position have on the amplitude of your oscillation? Vie
    9·2 answers
  • An initially stationary 2.7 kg object accelerates horizontally and uniformly to a speed of 13 m/s in 4.0 s. (a) In that 4.0 s in
    12·1 answer
  • The index of refraction for water is about 4/3. What happens to light when it travels from air into water?
    13·1 answer
  • The following statement is FALSE. You must replace the capitiized word with a different word that will make this statement corre
    7·1 answer
  • Point X is midway between the charges. In what section of the line will there be a point where the resultant electric field is z
    9·1 answer
  • A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete ( k = 0.79 W/m⋅K, α = 5.94 × 10 −7 m2/s, rho = 1600kg
    10·1 answer
  • Describe how to make a position-time graph.
    5·1 answer
  • If a rod attached to the approaching charge if the rod consists of "stiff" spring-like bonds for which atoms undergo small oscil
    5·1 answer
  • What important component is still scarce for American manufacturers, which had 40 days' worth before the pandemic but only had a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!