1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zepler [3.9K]
2 years ago
14

A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,

initially at rest on a level surface. The bullet passes through the block and emerges with its speed reduced to 190 m/s. The block slides a distance of 72.0 cm along the surface from its initial position.
a. What is the coefficient of kinetic friction between block and surface?
b. What is the decrease in kinetic energy of the bullet?
c. What is the kinetic energy of the block at the instant after the bullet passes through it?
Physics
1 answer:
Maru [420]2 years ago
4 0

Answer:

a) Coefficient of kinetic friction between block and surface = 0.12

b) Decrease in kinetic energy of the bullet = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = 0.541 J

Explanation:

Given,

Mass of bullet = 4.00 g = 0.004 kg

Initial velocity of the bullet = 400 m/s

Mass of wooden block = 0.65 kg

Initial velocity of the wooden block = 0 m/s (since it was initially at rest)

Final velocity of the bullet = 190 m/s

Distance slid through by the block after the collision = d = 72.0 cm = 0.72 m

Let the velocity of the wooden block after collision be v

According to the law of conservation of momentum,

Momentum before collision = Momentum after collision

Momentum before collision = (Momentum of bullet before collision) + (Momentum of wooden block before collision)

Momentum of bullet before collision = (0.004×400) = 1.6 kgm/s

Momentum of wooden block before collision = (0.65)(0) = 0 kgm/s

Momentum after collision = (Momentum of bullet after collision) + (Momentum of wooden block after collision)

Momentum of bullet after collision = (0.004×190) = 0.76 kgm/s

Momentum of wooden block after collision = (0.65)(v) = (0.65v) kgm/s

Momentum balance gives

1.6 + 0 = 0.76 + 0.65v

0.65v = 1.6 - 0.76 = 0.84

v = (0.84/0.65)

v = 1.29 m/s

The velocity of the wooden block after collision = 1.29 m/s

To obtain the coefficient of kinetic friction between block and surface, we will apply the work-energy theorem.

The work-energy theorem states that the work done in moving the block from one point to another is equal to the change in kinetic energy of the block between these two points.

The points to consider are the point when the block starts moving (immediately after collision) and when it stops as a result of frictional force.

Mathematically,

W = ΔK.E

W = workdone by the frictional force in stopping the wooden block (since there is no other horizontal force acting on the block)

W = -F.d (minus sign because the frictional force opposes motion)

d = Distance slid through by the block after the collision = 0.72 m

F = Frictional force = μN

where N = normal reaction of the surface on the wooden block and it is equal to the weight of the block.

N = W = mg

F = μmg

W = - μmg × d = (-μ)(0.65)(9.8) × 0.72 = (-4.59μ) J

ΔK.E = (final kinetic energy of the block) - (initial kinetic energy of the block)

Final kinetic energy of the block = 0 J (since the block comes to a rest)

(Initial kinetic energy of the block) = (1/2)(0.65)(1.29²) = 0.541 J

ΔK.E = 0 - 0.541 = - 0.541 J

W = ΔK.E

-4.59μ = -0.541

μ = (0.541/4.59)

μ = 0.12

b) The decrease in kinetic energy of the bullet

(Decrease in kinetic energy of the bullet) = (Kinetic energy of the bullet before collision) - (Kinetic energy of the bullet after collision)

Kinetic energy of the bullet before collision = (1/2)(0.004)(400²) = 320 J

Kinetic energy of the bullet after collision = (1/2)(0.004)(190²) = 72.2 J

Decrease in kinetic energy of the bullet = 320 - 72.2 = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = (1/2)(0.65)(1.29²) = 0.541 J

Hope this Helps!!!

You might be interested in
Which of the following temparature is approximately equal to room temperature
Artist 52 [7]

Hello there! :)

\huge\boxed{\text{C. 293K}}

Room temperature is approximately 20°C.

We can automatically eliminate choices B and D since they are not equal to 20°C.

Since some choices use the Kelvin scale, we can convert from Celsius to Kelvin using a simple formula:

K = C° + 273

Find room temperature in degrees <u>Kelvin</u>:

K = 20° + 273

K = 293°

Thus, the correct choice would be <u>C. 293K.</u>

6 0
3 years ago
What is the electrical force between q2 and q3? Recall that k = 8. 99 × 109 N•meters squared over Coulombs squared. 1. 0 × 1011
nlexa [21]

Force on the particle is defined as the application of the force field of one particle on another particle. the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.

<h3>What is electric force?</h3>

Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.

The electric force in the second case will be the same as in the first case. Therefore the force on the particle will be the same.

\rm F= K\frac{q_2q_3}{r^2}

\rm F= 9\times 10^9 \times \frac{1.6 \times 10^{-13}\times 1.6\times10^{-13}}{(0.5)^2}

\rm F=  - 1. 1 \times 10^{11 }N

Hence the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.

To learn more about the electric force refer to the link;

brainly.com/question/1076352

4 0
2 years ago
An 80 g, 40 cm long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 15 g ball of clay trav
fiasKO [112]

Answer:

θ  = 12.95º

Explanation:

For this exercise it is best to separate the process into two parts, one where they collide and another where the system moves altar the maximum height

Let's start by finding the speed of the bar plus clay ball system, using amount of momentum

The mass of the bar (M = 0.080 kg) and the mass of the clay ball (m = 0.015 kg) with speed (v₀ = 2.0 m / s)

Initial before the crash

      p₀ = m v₀

Final after the crash before starting the movement

     p_{f} = (m + M) v

     p₀ = p_{f}

     m v₀ = (m + M) v

     v = v₀ m / (m + M)

     v = 2.0 0.015 / (0.015 +0.080)

     v = 0.316 m / s

With this speed the clay plus bar system comes out, let's use the concept of conservation of mechanical energy

Lower

    Em₀ = K = ½ (m + M) v²

Higher

    E_{mf} = U = (m + M) g y

   Em₀ = E_{mf}

   ½ (m + M) v² = (m + M) g y

   y = ½ v² / g

   y = ½ 0.316² / 9.8

   y = 0.00509 m

Let's look for the angle the height from the pivot point is

    L = 0.40 / 2 = 0.20 cm

The distance that went up is

     y = L - L cos θ

     cos θ  = (L-y) / L

     θ  = cos⁻¹ (L-y) / L

     θ  = cos⁻¹-1 ((0.20 - 0.00509) /0.20)

      θ  = 12.95º

4 0
3 years ago
Friction always acts____ and in the ____ direction of the motion of an object ​
Fed [463]

Answer:

Friction force always acts tangent to the surface at points of contact. Friction force acts opposite to the direction of motion. There are 2 types of friction: Static friction: If the two surfaces in contact do not move relative to each other, one has static friction.

5 0
2 years ago
Two balls have their centers 2.0 m apart. One ball has a mass of m1 = 7.9 kg. The other has a mass of m2 = 6.1 kg. What is the g
maks197457 [2]

Answer:

3.036×10⁻¹⁰ N

Explanation:

From newton's law of universal gravitation,

F = Gm1m2/r² .............................. Equation 1

Where F = Gravitational force between the balls, m1 = mass of the first ball, m2 = mass of the second ball, r = distance between their centers.

G = gravitational constant

Given: m1 = 7.9 kg, m2 = 6.1 kg, r = 2.0 m, G = 6.67×10⁻¹¹ Nm²/C²

Substituting into equation 1

F = 6.67×10⁻¹¹×7.9×6.1/2²

F = 321.427×10⁻¹¹/4

F = 30.36×10⁻¹¹

F = 3.036×10⁻¹⁰ N

Hence the force between the balls = 3.036×10⁻¹⁰ N

8 0
3 years ago
Other questions:
  • a baseball pitcher throws a fastball at 98 mph. he also has a slower "changeup" pitch, 75 mph, which he throws identically, same
    8·1 answer
  • What items resemble the path of light when it travels through space?
    9·1 answer
  • Describe how sound waves are produced by the drum and then heard.
    11·1 answer
  • What force is necessary to accelerate a 1050 kg car at a rate of 10 m/s2?
    5·1 answer
  • 1 + 1 + 1 + 2 equals to what​
    7·2 answers
  • Insect A moves 5.0 m/min and insect B moves
    12·1 answer
  • Talent = Current in nuerons x Time ÷ Change in dogs body Temperature
    15·1 answer
  • A scientist measures the number of flies in a room over time. The results are
    10·1 answer
  • The power in an electrical circuit is given by the equation P= RR, where /is
    8·1 answer
  • find the density, in g/cm3g/cm3 , of a metal cube with a mass of 50.3 gg and an edge length (l)(l) of 2.65 cmcm . for a cube v
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!