Answer:
COP = 0.090
Explanation:
The general formula for COP is:
COP = Desired Output/Required Input
Here,
Desired Output = Heat removed from water while cooling
Desired Output = (Specific Heat of Water)(Mass of Water)(Change in Temperature)/Time
Desired Output = [(4180 J/kg.k)(3.1 kg)(25 - 11)k]/[(12 hr)(3600 sec/hr)]
Desired Output = 4.199 W
And the required input can be given as electrical power:
Required Input = Electrical Power = (Current)(Voltage)
Required Input = (2.9 A)(16 V) = 46.4 W
Therefore:
COP = 4.199 W/46.4 W
<u>COP = 0.090</u>
Answer:
u_e = 9.3 * 10^-8 J / m^3 ( 2 sig. fig)
Explanation:
Given:
- Electric Field strength near earth's surface E = 145 V / m
- permittivity of free space (electric constant) e_o = 8.854 *10^-12 s^4 A^2 / m^3 kg
Find:
- How much energy is stored per cubic meter in this field?
Solution:
- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:
u_e = 0.5*e_o * E^2
- Plug in the values given:
u_e = 0.5*8.854 *10^-12 *145^2
u_e = 9.30777 * 10^-8 J/m^3
Answer:
The stress in the rod is 39.11 psi.
Explanation:
The stress due to a pulling force is obtained dividing the pulling force by the the area of the cross section of the rod. The respective area for a cylinder is:

Replacing the diameter the area results:

Therefore the the stress results:

Answer:
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main() {
string name[5];
int age[5];
int i,j;
for ( i = 0; i<=4; i++ ) {
cout << "Please enter student's name:";
cin >> name[i];
cout << "Please enter student's age:";
cin >> age[i];
}
for (i=0;i<=4;i++){
cout<<"Age of "<< name[i]<<" is "<<age[i]<<endl;
}
}
Output of above program is displayed in figure attached.
Answer:
The entropy change of the air is 
Explanation:

is unknown
we can apply the following expression to find 


now substitute

To find entropy change of the air we can apply the ideal gas relationship
Δ

Δ

Δ