Answer:
4.24m/s
Explanation:
Potential energy at the top= kinetic energy at the button
But kinetic energy= sum of linear and rotational kinetic energy of the hoop
PE= mgh
KE= 1/2 mv^2
RE= 1/2 I ω^2
Where
m= mass of the hoop
v= linear velocity
g= acceleration due to gravity
h= height
I= moment of inertia
ω= angular velocity of the hoop.
But
I = m r^2 for hoop and ω = v/r
giving
m g h = 1/2 m v^2 + 1/2 (m r^2) (v^2/r^2) = 1/2 m v^2 + 1/2 m v^2 = m v^2
and m's cancel
g h = v^2
Hence
v= √gh
v= √10×1.8
v= 4.24m/s
The answer is going to be C, Bacteria. Therefore the organisms that are used to manufacture human insulin would be bacteria.
Answer:
Option B
Explanation:
Magnification of Microscope is
Mo= Magnification of objective lens and
Me= magnification of the eyepiece.
Both magnifications( of objective and eyepiece) are inversely proportional to the focal length.
Magnification,

when the focal length is less magnification will be high and when the magnification is the low focal length of the microscope will be more.
Thus. Magnification will increase by decreasing the focal length.
The correct answer is Option B
<span>When an object moves in a circle, the acceleration points toward the center of the circle. This acceleration is called centripetal acceleration.
We can use a simple equation to find centripetal acceleration.
a = v^2 / r
We can use this same equation to find the speed of the car.
v^2 = a * r
v = sqrt { a * r }
v = sqrt{ (1.50)(9.80 m/s^2)(11.0 m) }
v = 12.7 m/s
The speed of the roller coaster is 12.7 m/s</span>