Hi my friend, since momentum is always conserved without external forces, the momentum after the collosion will still be 0.06 kg*m/s. Hope it helps☺
Answer:
58.44 C
Explanation:
Electric field is found by
Therefore, the charge is


Therefore, required charge is 58.44 C
The electric field at the surface of the cylinder is 51428V/m
Given data:
• The length of the charge is l= 7m.
• The charge is q = 2μC..
• The radius the cylinder is r = 10 cm
Since the filament length is so large as compared to the cylinder length that the infinite line of charge can be assumed.
The expression to calculate the electric field is given as,
E=2kλ/r
Here, λ is the linear charge density.
Substitute the values in the above equation,
E = (2×9×109N⋅m^2/C^2×2×10^−6C)/0.1m×7m
E = 51428N/C×(V/m)/(N/C)
=51428V/m
An electric charge is the property of matter where it has more or fewer electrons than protons in its atoms. Electrons carry a negative charge and protons carry a positive charge. Matter is positively charged if it contains more protons than electrons, and negatively charged if it contains more electrons than protons.
Learn more about charge here:
brainly.com/question/19886264
#SPJ4
Answer:
6926.4J
Explanation:
Given parameters:
Mass of iron = 200g
Initial temperature = 100°C
Final temperature = 22°C
Unknown:
Amount of heat transferred to the water = ?
Solution:
The quantity of heat transferred to the water is a function of mass and temperature of the iron;
H = m c Ф
m is the mass of the iron
Ф is the change in temperature
C is the specific heat capacity of iron = 0.444 J/g°C
Now;
insert the parameters and solve;
H = 200 x 0.444 x (100-22)
H = 6926.4J