Answer:
Final velocity of both goalie & puck = 0.018116 m/s
Explanation:
M1U1 + M2U2 = (M1+M2)V
70 x 0 + 0.17 x 33.5 = (70+0.17)V
V = 0.08116m/s
In the single-slit experiment, the displacement of the minima of the diffraction pattern on the screen is given by
![y_n= \frac{n \lambda D}{a}](https://tex.z-dn.net/?f=y_n%3D%20%5Cfrac%7Bn%20%5Clambda%20D%7D%7Ba%7D)
(1)
where
n is the order of the minimum
y is the displacement of the nth-minimum from the center of the diffraction pattern
![\lambda](https://tex.z-dn.net/?f=%5Clambda)
is the light's wavelength
D is the distance of the screen from the slit
a is the width of the slit
In our problem,
![D=37.0 cm=0.37 m](https://tex.z-dn.net/?f=D%3D37.0%20cm%3D0.37%20m)
![\lambda=530 nm=5.3 \cdot 10^{-7} m](https://tex.z-dn.net/?f=%5Clambda%3D530%20nm%3D5.3%20%5Ccdot%2010%5E%7B-7%7D%20m)
while the distance between the first and the fifth minima is
![y_5-y_1 = 0.500 mm=0.5 \cdot 10^{-3} m](https://tex.z-dn.net/?f=y_5-y_1%20%3D%200.500%20mm%3D0.5%20%5Ccdot%2010%5E%7B-3%7D%20m)
(2)
If we use the formula to rewrite
![y_5, y_1](https://tex.z-dn.net/?f=y_5%2C%20y_1)
, eq.(2) becomes
![\frac{5 \lambda D}{a} - \frac{1 \lambda D}{a} =\frac{4 \lambda D}{a}= 0.5 \cdot 10^{-3} m](https://tex.z-dn.net/?f=%20%5Cfrac%7B5%20%5Clambda%20D%7D%7Ba%7D%20-%20%5Cfrac%7B1%20%5Clambda%20D%7D%7Ba%7D%20%3D%5Cfrac%7B4%20%5Clambda%20D%7D%7Ba%7D%3D%200.5%20%5Ccdot%2010%5E%7B-3%7D%20m%20%20)
Which we can solve to find a, the width of the slit:
Answer:
the length of the pipe is 0.85 m or 85 cm
Explanation:
Given the data in the question;
The successive harmonics are; 700 Hz , 900 Hz , and 1100 H
Now, for a closed pipe,
length of pipe (L) = λ/4
Harmonics; 1x, 3x, 5x, 7x, 9x, 11x
1100Hz - 900Hz = 200Hz
⇒ 2x = 200Hz
x = 100Hz ( fundamental frequency )
λ = V/f = 340 /100 = 3.4 m
Now
Length L = λ / 4
L = 3.4 / 4
L = 0.85 m or 85 cm
Therefore, the length of the pipe is 0.85 m or 85 cm