14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.
Answer
given,
net charge = +2.00 μC
we know,
1 coulomb charge = 6.28 x 10¹⁸electrons
1 micro coulomb charge = 6.28 x 10¹⁸ x 10⁻⁶ electron
= 6.28 x 10¹² electrons
2.00 μC = 2 x 6.28 x 10¹² electrons
= 1.256 x 10¹³ electrons
since net charge is positive.
The number of protons should be 1.256 x 10¹³ more than electrons.
hence, +2.00 μC have 1.256 x 10¹³ more protons than electrons.
Answer:
2.7ohms
Explanation:
Given parameters:
Voltage of the battery = 12V
Current = 4.5A
Unknown:
Resistance of the resistor = ?
Solution:
From Ohm's law, we know that;
V = IR
V is the voltage
I is the current
R is the resistance
So;
R =
=
= 2.7ohms
Answer:
20 m/s
30 m/s
Explanation:
Given:
v₀ = -10 m/s
a = -9.8 m/s²
When t = 1 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (1 s)
v = -19.8 m/s
When t = 2 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (2 s)
v = -29.6 m/s
Rounded to one significant figures, the speed of the ball at 1 s and 2 s is 20 m/s and 30 m/s, respectively.
Answer: The displacement is 1 block.
Explanation:
Let's define:
The right is the positive side.
The left is the negative side.
Then if you start at position A, and you walk N blocks to the right, the new position is:
A + N
And if you start at position A, and you walk M blocks to the left, the new position is:
A - M.
In this case, we know that Kayla starts at -3 and she walks 5 blocks to the right.
Then her new position is:
-3 + 5 = 2
Now she walks 3 blocks to the left, then her new position is:
2 - 3 = -1
The displacement will be equal to the difference between the final position (-1) and the initial position (-2)
Then the displacement is:
D = -1 - (-2) = -1 +2 = 1
The displacement is 1 block.