Answer:
Frequency and wavelength are inversely proportional to each other. The wave with the greatest frequency has the shortest wavelength. Twice the frequency means one-half the wavelength. For this reason, the wavelength ratio is the inverse of the frequency ratio.
Answer:
5.025 atm
Change the 2.01 to ml then cross multiply
400/1= 2010/x
210/400=5.025
Answer:
When the ball hits the ground, the velocity will be -34 m/s.
Explanation:
The height and velocity of the ball at any time can be calculated using the following equations:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height of the ball at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity. (-9.8 m/s² considering the upward direction as positive).
v = velocity at time "t".
If we place the origin of the frame of reference on the ground, when the ball hits the ground its height will be 0. Then using the equation of height, we can calculate the time it takes the ball to reach the ground:
y = y0 + v0 · t + 1/2 · g · t²
0 = 60 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 = 60 m - 4.9 m/s² · t²
-60 m / -4.9 m/s² = t²
t = 3.5 s
Now, with this time, we can calculate the velocity of the ball when it reaches the ground:
v = v0 + g · t
v = 0 m/s - 9.8 m/s² · 3.5 s
v = -34 m/s
When the ball hits the ground, the velocity will be -34 m/s.
Answer:
The given statement is false.
Explanation:
For any negative vector

The magnitude of the vector is given by

As we know that square root of any quantity cannot be negative thus we conclude that the right hand term in the above expression cannot be negative hence we conclude that magnitude of any vector cannot be negative.