Answer:
A. 91 meters north
Explanation:
Take +y to be north.
Given:
v₀ = 13 m/s
a = 0 m/s²
t = 7 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13 m/s) (7 s) + ½ (0 m/s²) (7 s)²
Δy = 91 m
The displacement is 91 m north.
It reaches 10 or 20 million degrees kelvin but it can get as high as 10 million degrees kelvin
initial velocity of the car given as
final velocity is given as
as we know that
now we can convert final speed into m/s
now acceleration is rate of change in velocity
so the acceleration of the car is 3 m/s^2
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
Answer:
<em>The distance is 35 m and the magnitude of the displacement is 26.93 m</em>
Explanation:
<u>Displacement and Distance</u>
These are two related concepts. A moving object constantly travels for some distance at defined periods of time. The total distance is the sum of each individual distance the object traveled. It can be written as:
dtotal=d1+d2+d3+...+dn
This sum is calculated independently of the direction the object moves.
The displacement only takes into consideration the initial and final positions of the object. The displacement, unlike distance, is a vectorial magnitude and can even have magnitude zero if the object starts and ends the movement at the same point.
Taylor walks 25 m north and 10 m west. The total distance is the sum of both numbers:
d = 25 m + 10 m = 35 m
To calculate the displacement, we need to know the final position with respect to the initial position. If we set the coordinates of Taylor's car as the origin (0,0), then his final position is (-10,25), assuming the west direction is negative and the north direction is positive.
The magnitude of the displacement is the distance from (0,0) to (-10,25):
D = 26.93 m
The distance is 35 m and the magnitude of the displacement is 26.93 m