Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
Answer: Technician B is right.
Explanation:
Evacuation process is used in refrigeration systems to remove moisture, air and non-profit condensable gases in order to achieve maximum function of the system.
vacuum pump is used to draw the sealed AC system into a vacuum. Evacuation of a refrigerant system also helps to maintain pressure, this is so as pulling a vacuum on the system is simply removing matter (mostly air and nitrogen) from inside the system so that the pressure inside drops below atmospheric pressure.
Answer:
A fluids is any substance that flows. Air is made of stuff, air particles, that are loosely held together in a gas form. Although liquids are the most commonly recognized fluids, gasses are also fluids. Since air is a gas, it flows and takes the form of its container.
Explanation:
Answer:The change in pressure can affect the pressure on the fluid through the radius and diameter of the pipe.
r^² x Pressure (pa).
Therefore the narrower the other part of the pile, the greater the pressure on the fluid at such part, the wider in other part the lesser the pressure on the fluid at this part.
Explanation:
Answer:
Around 44.01g.
Explanation:
One mole of carbon dioxide molecules has a mass of 44.01g, while one mole of sodium sulfide formula units has a mass of 78.04g.