<span>They would feel that the water is cold.
</span> The atmosphere is heated both by the Sun and by the Earth's surface. Water radiates heat differently than land, so the air temperature over the ocean is usually different than the air temperature over land. <span>
The difference in air temperature over land compared to over water causes convection currents in the atmosphere. How would a person at the beach experience these convection currents?
</span>They would feel that the water is cold.
NOT:
They would feel the heat of the Sun.
They would feel that the sand is hot.
<span>They would feel wind as the air moves.</span>
Answer:
it have Potential energy
Explanation:
given data
Drag the pendulum to an angle 30∘
to find out
what form of energy does it have
solution
we know that pendulum start no kinetic energy when it release from any rest position then in starting it have potential energy only so that when pendulum is angle 30∘ at some height from ground so when it start it have potential energy same as in starting.
we know that the total energy is always conserve
so it have potential energy
<span>As the frequency of the waves increases, a greater number of wavelengths pass a given point per second. From the wave formula, we see that there is an indirect relationship between frequency and the wavelength. thus, as the frequency increases the wavelength decreases resulting to a smaller distance between the waves which will show greater number of wavelengths between waves.</span>
To start with solving this
problem, let us assume a launch angle of 45 degrees since that gives out the
maximum range for given initial speed. Also assuming that it was launched at
ground level since no initial height was given. Using g = 9.8 m/s^2, the
initial velocity is calculated using the formula:
(v sinθ)^2 = (v0 sinθ)^2
– 2 g d
where v is final
velocity = 0 at the peak, v0 is the initial velocity, d is distance = 11 m
Rearranging to find for
v0: <span>
v0 = sqrt (d * g/ sin(2 θ)) </span>
<span>v0 = 10.383 m/s</span>
F = ma
<span>where </span>
<span>F = frictional force </span>
<span>m = mass of the block = 1.4 kg (given) </span>
<span>a = acceleration of the block = 1.25 m/sec^2 (given) </span>
<span>Substituting values, </span>
<span>F = (1.4)(1.25) </span>
<span>F = 1.75 N </span>
<span>By definition, </span>
<span>F = (mu)(Normal force) </span>
<span>where </span>
<span>mu = coefficient of friction </span>
<span>Normal force = mg = 1.4*9.8 = 13.72 </span>
<span>Again, substituting appropriate values, </span>
<span>1.75 = mu(13.72) </span>
<span>mu = 0.128</span>