(a) 25lx
(b) 11.11lx
<u>Explanation:</u>
Illuminance is inversely proportional to the square of the distance.
So,

where, k is a constant
So,
(a)
If I = 100lx and r₂ = 2r Then,

Dividing both the equation we get

When the distance is doubled then the illumination reduces by one- fourth and becomes 25lx
(b)
If I = 100lx and r₂ = 3r Then,

Dividing equation 1 and 3 we get

When the distance is tripled then the illumination reduces by one- ninth and becomes 11.11lx
Required value of initial speed of the bullet be ( 4M/m)√(gL).
Given parameters:
Mass of the bullet =m.
Mass of the bob of the pendulum = M.
speed of the bullet before collision = v
Speed of the bullet after collision = v/2.
Length of the pendulum stiff rod = L.
Let speed transmitted to the pendulum be u.
Using principle of conservation of momentum:
mv = Mu + mv/2
⇒ Mu = mv/2
⇒ u = (m/M)v/2
We know that: to make the bob over the top of the trajectory without falling backward in its circular path, required speed be = √(4gL). [ where g = acceleration due to gravity]
To be minimum initial speed the bullet must have in order for the pendulum bob to just barely swing through a complete vertical circle:
u = √(4gL)
⇒ (m/M)v/2 = √(4gL)
⇒ v =( 4M/m)√(gL).
Hence, minimum required speed of the bullet be ( 4M/m)√(gL).
Learn more about speed here:
brainly.com/question/28224010
#SPJ1
That would be reflection.
<h2>Answer:</h2>
A series circuit occurs when the elements are connected along a simple path so the same current flows through all the elements. On the other hand, a parallel circuit occurs when there are two or more paths for the electricity to flow. The diagram are shown in the Figure below. We have chosen a source and resistors to illustrate this problem.