Answer:
Given that;
Jello there, see explanstion for step by step solving.
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
Explanation:
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
See attachment for more clearity
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2
Answer:
a)Δs = 834 mm
b)V=1122 mm/s

Explanation:
Given that

a)
When t= 2 s


s= 114 mm
At t= 4 s


s= 948 mm
So the displacement between 2 s to 4 s
Δs = 948 - 114 mm
Δs = 834 mm
b)
We know that velocity V


At t= 5 s


V=1122 mm/s
We know that acceleration a


a= 90 t
a = 90 x 5

Answer:
0.0406 m/s
Explanation:
Given:
Diameter of the tube, D = 25 mm = 0.025 m
cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²
Mass flow rate = 0.01 kg/s
Now,
the mass flow rate is given as:
mass flow rate = ρAV
where,
ρ is the density of the water = 1000 kg/m³
A is the area of cross-section of the pipe
V is the average velocity through the pipe
thus,
0.01 = 1000 × 4.9 × 10⁻⁴ × V
or
V = 0.0203 m/s
also,
Reynold's number, Re = 
where,
ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s
thus,
Re = 
or
Re = 611.39 < 2000
thus,
the flow is laminar
hence,
the maximum velocity = 2 × average velocity = 2 × 0.0203 m/s
or
maximum velocity = 0.0406 m/s
Answer:
the president and mr.white my history teacher lol