Answer:
the box has vertical force on the table
Explanation:
There can be no single isolated force, for every action there must be a force of reaction of ingual magnitude and direction, but in the opposite direction
Answer:
False
Explanation:
An object in uniform circular motion must be changing its velocity in order to move in a circular path.
In fact, remind that velocity is a vector which consists of a magnitude (the speed) and a direction.
When an object is moving in uniform circular motion, the direction of the motion is constantly changing (since the trajectory is a circle): so, this means that the velocity is also changing. However, this does not imply that the speed of the object is changing. In fact, in a uniform circular motion, the speed of the object remains constant.
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.
Answer: Cold Ocean Currents: It is the layer of the ocean water which moves due to the stress of blowing the wind and this motion is thus called as Ekman Transport. Deep Water Currents: They constitute about 90% of the ocean water. They move around the ocean basin due to variations in the density and gravity.