The fatal current is 51 mA = 0.051 Ampere.
The resistance is 2,050Ω .
Voltage = (current) x (resistance)
= (0.051 Ampere) x (2,050 Ω) = 104.6 volts .
==================
This is what the arithmetic says IF the information in the question
is correct.
I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as 15 mA through the
heart can be fatal, not 51 mA .
If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as 31 volts !
The voltage at the wall-outlets in your house is 120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
<span>A.) Burning fossil fuels pollutes the environment and our heavy reliance on them creates a long-term problem because they are not a renewable resource.</span>
Answer:
Explanation:
Given that,
Electric field E=135V/m
Energy stored in 1m³of air=?
The energy stored in an electric field is given as
u = ½ εo E²
Where
U is the energy stored
εo is permissivity and it value is 8.85×10^-12C²/N..m²
And E is the electric field
Then,
U=½×8.85×10^-12×135²
U=8.06×10^-8J/m³
Then, the energy stored in 1m³ of air is 8.06×10^-8 J/m³
Answer:
Dy = 111.66 [m]
t = 3.5 [s]
Explanation:
To solve this problem we must use the equations of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 27 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time = 3.5 [s]
Note: The negative sign of the equation means that the gravity acceleration goes in opposite direction
Vf = 27 - (9,81*3,5)
Vf = - 7.33 [m/s] (this negative sign indicates that at this moment the snowball is going downwards)
To find how high the snowball was we must use the following equation:

Dy = (27*3.5) + (0.5*9.81*3.5)
Dy = 94.5 + (17.16)
Dy = 111.66 [m]