Hit
Or
Miss
I
Guess
They
Never
Miss
Huh
Answer:
<h2>Density = 0.2 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question the points are
mass = 6.8 g
volume = 34 mL
Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>Density = 0.2 g/mL</h3>
Hope this helps you
A glacier is a large persistent body of ice. A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by water vapor phase (steam). They both depend on water
44. (a) N2O3 (b) SF4 (c) AlCl3 (d) Li2CO3
46. H Br
δ+ δ−
48. The metallic potassium atoms lose one electron and form +1 cations,
and the nonmetallic fluorine atoms gain one electron and form –1 anions.
K → K+
+ e–
19p/19e–
19p/18e–
F + e–
→ F–
9p/9e–
9p/10e–
The ionic bonds are the attractions between K+
cations and F–
anions.
50. See Figure 3.6.
52. (a) covalent…nonmetal-nonmetal (b) ionic…metal-nonmetal
54. (a) all nonmetallic atoms - molecular (b) metal-nonmetal - ionic
56. (a) 7 (b) 4
58. Each of the following answers is based on the assumption that nonmetallic
atoms tend to form covalent bonds in order to get an octet (8) of
electrons around each atom, like the very stable noble gases (other than
helium). Covalent bonds (represented by lines in Lewis structures) and lone
pairs each contribute two electrons to the octet.
(a) oxygen, O
If oxygen atoms form two covalent bonds, they will have an octet of electrons
around them. Water is an example:
H O H
(b) fluorine, F
If fluorine atoms form one covalent bond, they will have an octet of electrons
around them. Hydrogen fluoride, HF, is an example:
H F
(c) carbon, C
If carbon atoms form four covalent bonds, they will have an octet of electrons
around them. Methane, CH4, is an example:
H H
H
H
C
(d) phosphorus, P
If phosphorus atoms form three covalent bonds, they will have an octet
Answer:
Will likely be the same
Explanation:
We can see in both pictures there is a black molecule and a red molecule. However, we also have a purple molecule in one image and a yellow in the other. It would LIKELY be the same because we have more of the same molecules then more different molecules. Hope this helps