Components connected in series are connected along a single path, so the same current flows through all of the components. If the light bulbs are connected in parallel, the currents through the light bulbs combine to form the current in the battery, while the voltage drop is across each bulb and they all glow.
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
It means there are two chlorine molecules and there is only one magnesium molecule (because no subscript really just means there is an invisible 1 that isn't listed).