1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
11

When a substance changes state ____ does not change the speed of the molecules?

Physics
1 answer:
Vilka [71]3 years ago
6 0
I don't understand what you are looking for. I can tell you that the speed of molecules does change during state changing.
You might be interested in
A red blood cell is 7 x 10-6 m in size. This means it is 7 __________ in size. What unit completes the sentence?
aalyn [17]

If a red blood cell is 7 x 10^-^6 m in size, it means that such a cell is 7 microns or micrometer in size. The unit that completes the sentence will, thus, be microns or micrometer.

According to international system of measurement:

  • 10^{-1} m = decimeter
  • 10^{-2} m = centimeter
  • 10^{-3} m = millimeter
  • 10^{-6} m = micrometer or micron
  • 10^{-9} m = nanometer

Thus, a measurement of 7 x 10^-^6 m is the same is 7 micons or 7 micrometer.

More on metric conversion can be found here: brainly.com/question/17767575

5 0
2 years ago
A spaceship from a friendly, extragalactic planet flies toward Earth at 0.203 0.203 times the speed of light and shines a powerf
Serjik [45]

Answer:

567.321nm

Explanation:

See attached handwritten document for more details

7 0
3 years ago
Read 2 more answers
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
How is work related to potential energy and kinetic energy?
NemiM [27]
Search Results
Featured snippet from the web
Work is the force on the object as it changes a distance. Interestingly, as work is done on an object, potential energy can be stored in that object. For example, if you carry a load up the stairs. Now that load will have potential energy that can be transformed into kinetic energy and so on
3 0
3 years ago
Two groups of students were tested to compare their speed working math problems. Each group was given the same problems. One gro
oee [108]

Answer:

The people with caculators will probably answer faster due to thier ablitiy to use a device of technology

3 0
4 years ago
Other questions:
  • Two forces (4n and 3n) pull to the left while a 12n force pulls to the right. What is the net force?
    13·2 answers
  • What happens when a magenta light is shone on a green surface?
    9·1 answer
  • What is the sum of all forces acting on an object and direction
    13·1 answer
  • HEY CAN ANYONE PLS ANSWER DIS RQ!!!!
    5·1 answer
  • The ratio of yellow bottles to green bottles is 3:7. If I have 50 bottles how many are yellow
    6·1 answer
  • An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, fil
    14·1 answer
  • Which of the following is a<br> fossil fuel?<br> A. Coal<br> B. Wind energy<br> C. Biomass energy
    8·2 answers
  • How does a vector quantity differ from a scalar?
    12·2 answers
  • Visible light waves do not diffract as well as radio waves because
    9·1 answer
  • when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!