Answer:
1.2826 x 10^-13 m
Explanation:

Here, k be the kinetic energy and m be the mass
K = 50 KeV = 50 x 1.6 x 10^-16 J = 80 x 10^-16 J
m = 1.67 x 10^-27 kg

λ = 1.2826 x 10^-13 m
Answer:
2.605m
Explanation:
Using the formula for calculating Range (distance travelled in horizontal direction)
Range R = U√2H/g
U is the speed = 4.8m/s
H is the maximum height = ?
g is the acc due to gravity = 9.8m/s²
R = 3.5m
Substitute into the formula and get H
3.5 = 4.8√2H/9.8
3.5/4.8 = √2H/9.8
0.7292 = √2H/9.8
square both sides
0.7292² = 2H/9.8
2H = 0.7292² * 9.8
2H = 5.21
H = 5.21/2
H = 2.605m
Hence the height of the ball from the ground is 2.605m
H = 280 ft, the height of the flower pot.
g = 32 ft/s²
Neglect air resistance.
Note that 1 ft/s = 15/22 mi/h
The initial vertical velocity is zero.
Let v = the velocity with which the flower pot hits the ground.
Then
v² = 2gh
= 2*(32 ft/s²)*(280 ft)
= 17920 (ft/s)²
v = 133.866 ft/s
Also,
v = (133.866 ft/s)*(15/22 (mi/h)/(ft/s)) = 91.272 mi/h
Answer: 133.9 ft/s or 91.3 mi/h