Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Answer:
You have a displacement of 5 units to the right.
Explanation:
First you go three to the right which lands on the 3 mark. Then you move it 4 to the left which substracts 4, landing the object at -1. Finally you move 6 to the right, and you finish at marker 5. Since displacement is not total distance but just final distance from the start point directly to end point, it is only a displacement of 5.
Easier to write, easier to read, easier to understand, easier to compare
The pressure of the water on the diver is given in an expression written as:
<span>p=15+15/33d
where p is the pressure and d is the distance of the diver </span><span>below the surface.
The pressure is calculated as follows:
</span>p=15+15/33(100) = 15.00 pounds per square feet
Therefore, the correct answer is option A.
Answer:
Explanation:
BeSO₄ + 2NH₄OH → Be(OH)₂ + (NH₄)₂SO₄
In a replacement reaction, an atom or ion substitutes or replaces another in a reaction. We can have single replacement or double replacement reaction.
The above is a double replacement reaction. In this type of reaction, partners are exchanged to form compounds. In a single replacement, one substance is replacing another.