Answer:
The answer is 12.67 TMU
Explanation:
Recall that,
worker’s eyes travel distance must be = 20 in.
The perpendicular distance from her eyes to the line of travel is =24 in
What is the MTM-1 normal time in TMUs that should be allowed for the eye travel element = ?
Now,
We solve for the given problem.
Eye travel is = 15.2 * T/D
=15.2 * 20 in/24 in
so,
= 12.67 TMU
Therefore, the MTM -1 of normal time that should be allowed for the eye travel element is = 12.67 TMU
Answer:
Given that
V2/V1= 0.25
And we know that in adiabatic process
TV^န-1= constant
So
T1/T2=( V1 /V2)^ န-1
So = ( 1/0.25)^ 0.66= 2.5
Also PV^န= constant
So P1/P2= (V2/V1)^န
= (1/0.25)^1.66 = 9.98
A. RMS speed is
Vrms= √ 3RT/M
But this is also
Vrms 2/Vrms1= (√T2/T1)
Vrms2=√2.5= 1.6vrms1
B.
Lambda=V/4π√2πr²N
So
Lambda 2/lambda 1= V2/V1 = 0.25
So the mean free path can be inferred to be 0.25 times the first mean free path
C. Using
Eth= 3/2KT
So Eth2/Eth1= T2/T1
So
Eth2= 2.5Eth1
D.
Using CV= 3/2R
Cvf= Cvi
So molar specific heat constant does not change
Answer:
A. usually 3 cards a year means you have little or no credit I believe
Answer:
reduction in the amount of CO₂ emissions by that household per year is 9517.2 lbm per year
Explanation:
given data
electricity consume = 14000 kWh
fuel consume = 900 gal
CO₂ produced of fuel = 26.4 lbm/gal
CO₂ produced of electricity = 1.54 lbm/kWh
oil and electricity usage = 21 percent
to find out
the reduction in the amount of CO₂ emissions
solution
we calculate the amount of CO₂ produce here that is
amount of CO₂ produce = ( electricity consume×CO₂ produce electricity + fuel consume × CO₂ consume fuel ) ........................1
put here value
amount of CO₂ produce = ( 14000 × 1.54 + 900 × 26.4 )
amount of CO₂ produce = 45320 lbm/yr
we know reduction is 21%
so
reduction in amount of CO₂ produced is
reduction in CO₂ produced = 45320 × 21%
reduction in CO₂ produced = 9517.2 lbm per year
so reduction in the amount of CO₂ emissions by that household per year is 9517.2 lbm per year
Answer:
72km
Explanation:
30 mins --> 30 x 60 s = 1800 s
Distance --> Speed x Time
= 40m/s x 1800s
= 72 000 m
= 72 km (1km is 1000m)