Answer:
9.6 rad/s
Explanation:
= length of the metal rod = 50 cm = 0.50 m
= Mass of the long metal rod = 780 g = 0.780 kg
Moment of inertia of the rod about one end is given as

= force applied by the hammer blow = 1000 N
Torque produced due to the hammer blow is given as



= time of blow = 2.5 ms = 0.0025 s
= Angular velocity after the blow
Using Impulse-change in angular momentum, we have

Answer:I’m pretty sure it’s spatial
Explanation:
Answer:the force will remain same
Explanation:
because force is equal to the ratio of magnitude and distance
Answer:
D.vibrations that cause changes in air pressure
Explanation:
Sound is a type of wave.
A wave is a periodic disturbance/oscillation that trasmits energy without transmitting matter. There are two different types of waves:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. These waves are characterized by the presence of crests (points of maximum positive displacement) and troughs (points of maximum negative displacement). Examples of transverse wave are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. These waves are characterized by the presence of compressions (regions where the density of particle is higher) and rarefactions (regions where the density of particle is lower). Examples of longitudinal waves are sound waves.
Sound waves, in particular, consist of vibrations of the particles in a medium - most commonly, air - that occur back and forth along the direction of motion of the wave. Because of these motion, the air will have areas of higher pressure (which correspond to the compressions), where the density of particles is higher, and areas of lower pressure (which correspond to the rarefactions), where density of particles is lower.
A parallel circuit is sometimes called a current divider because current splits up among all the resistors in the parallel circuit. In addition, the current through the branches is inversely proportional to the resistance of the branch. If the resistance in each branch is kept constant but the voltage is decreased, the current will decrease.