I believe your answer is: Switching Costs & Customer Loyalty
Mass of first car = Initial mass (Mi) = 2 kg
Initial velocity (Vi) = 2 m/s
Mass of both cars together = Final mass (Mf) = 2 + 3 kg = 5 kg
Final Velocity (Vf) = ?
Applying law of conservation of momentum,
Mi x Vi = Mf x Vf
2 x 2 = 5 x Vf
Vf = 4/5 = 0.8 m/s
Answer:
350 ft/s²
Explanation:
First, convert mph to ft/s.
58 mi/hr × (5280 ft/mi) × (1 hr / 3600 s) = 85.1 ft/s
Given:
v₀ = 85.1 ft/s
v = 0 ft/s
t = 0.24 s
Find: a
v = at + v₀
a = (v − v₀) / t
a = (0 ft/s − 85.1 ft/s) / 0.24 s
a = -354 ft/s²
Rounded to two significant figures, the magnitude of the acceleration is 350 ft/s².
The kinetic energy K = 0.5 * m * v² must be equal to the potential energy U = m * g * h.
m mass
v velocity
h height
g = 9.81m/s²
The mass m cancels out:
0.5 * v² = g * h
Solve for height h and transform to distance traveled.
(sin (4°) = height / distance)
The following information are given in the question:
Mass, M = 8 g
Temperature, T = 20 degree Celsius
Specific heat of water [this value is a constant] C = 1 c/gc
Heat, Q = ?
The formula for calculating the amount of heat required is given below:
Q = MCT = 8 * 1 * 20 = 160
Therefore, Q = 160 cal.
<span />