Answer:
Plants consume carbon through transpiration
Explanation:
In transpiration, plants lose water vapor through the stomata in their leaves. No carbon is involved in transpiration, which has an outbound direction. Nothing can be consumed through the stomata when vapor is going out of the plant. It´s like trying to get in through the exit.
A Liquid called Surface Tension.
Answer:
22.46
Explanation:
.There are 3.79 liters in one gallon
Answer:
[Ag⁺] = 0.0666M
Explanation:
For the addition of Ag⁺ and CN⁻, the (Ag(CN)₂⁻ is produced, thus:
Ag⁺ + 2CN⁻ ⇄ Ag(CN)₂⁻
Kf = 1x10²¹ = [Ag(CN)₂⁻] / [CN⁻]² [Ag⁺]
As initial concentrations of Ag⁺ and CN⁻ are:
[Ag⁺] = 0.110L × (3.0x10⁻³mol / L) = 3.3x10⁻⁴mol / (0.110L + 0.230L) = 9.7x10⁻⁴M
[CN⁻] = 0.230L × (0.1mol / L) = 0.023mol / (0.110L + 0.230L) = 0.0676M
The equilibrium concentrations of each compound are:
[CN⁻] = 9.7x10⁻⁴M - x
[Ag⁺] = 0.0676M - x
[Ag(CN)₂⁻] = x
<em>Where x is reaction coordinate</em>
Replacing in Kf formula:
1x10²¹ = [x] / [9.7x10⁻⁴M - x]² [0.0676M - x]
1x10²¹ = [x] / 6.36048×10⁻⁸ - 0.000132085 x + 0.06954 x² - x³
-1x10²¹x³ + 6.954x10¹⁹x² - 1.32085x10¹⁷ x + 6.36x10¹³ = x
-1x10²¹x³ + 6.954x10¹⁹x² - 1.32085x10¹⁷ x + 6.36x10¹³ = 0
Solving for x:
X = 9.614x10⁻⁴M
Thus, equilibrium concentration of Ag⁺ is:
[Ag⁺] = 0.0676M - 9.614x10⁻⁴M = <em>0.0666M</em>