The Intermolecular force is a type of force which exists between particles in an Ideal gas.
<h3>What type of force which exists between particles in an Ideal gas?</h3>
Intermolecular forces are considered weaker attractions that hold molecules in gas close together. This force of attraction is present between molecules or particles.
So we can conclude that the Intermolecular force is a type of force which exists between particles in an Ideal gas.
Learn more about attraction here: brainly.com/question/1308963
#SPJ1
The correct answer is 1 to the 3rd power
Answer:
A. 2Na + 2H₂O → 2NaOH + H₂
Explanation:
When sodium is reacted with water, a single replacement reaction occurs. The product of the reaction is typically sodium hydroxide and hydrogen gas.
Reactants:
Sodium + water
Product:
Sodium hydroxide + hydrogen gas
So;
2Na + 2H₂O → 2NaOH + H₂
Answer:
The answer is

Explanation:
The energy of a quantum of light can be found by using the formula
<h3>E = hf</h3>
where
E is the energy
f is the frequency
h is the Planck's constant which is
6.626 × 10-³⁴ Js
From the question
f = 4.31 × 10¹⁴ Hz
We have
E = 4.31 × 10¹⁴ × 6.626 × 10-³⁴
We have the final answer as

Hope this helps you
1. A radical is a reactive intermediate with a single ____________ electron, formed by ____________ of a covalent bond.
1. A: Unpaired, and homolysis
2. Allylic radicals are stabilized by ____________ , making them ____________ stable than tertiary radicals.
2. A: Resonance, and more
3. A compound that contains an especially weak bond that serves as a source of radicals is called a radical ____________ .
3. A: Initiator
4. Treatment of cyclohexene with N-bromosuccinimide in the presence of light leads to ____________ by ____________ intermediates.
4. A: Allylic substitution by radical