Answer:
A.
Explanation:
In an endothermic reaction heat is applied.
Answer: 50. 4g
Explanation:
First calculate number of moles of aluminium in 38.8g
Moles = 38.8g/ 26.982mol/g
= 1.44mol
By looking at the balance equation you can see that 4 moles of aluminium produce 2 moles of aluminium oxide.
4 = 2
1.4 = x
Find the value of x
x= (1.4×2)/4= 0.72 mol
0.72 moles of aluminium oxide are produced from 38.8g of aluminium
Now find the mass of aluminium produced.
Mass = moles × molar mass
= 0.72mol × 69.93 mol/g
= 50.4g
Answer:
If the ambient temperature around a piece of ice increases, the temperature of the ice will increase as well. However, this steady increase in temperature stops as soon as the ice reaches its melting point. At this point, the ice undergoes a change of state and turns into liquid water, and its temperature won't change until all of it has melted. You can test this with a simple experiment. Leave a cup of ice cubes in a hot car and monitor the temperature with a thermometer. You'll find that the icy water remains at a frosty 32 degrees Fahrenheit (0 degrees Celsius) until all of it has melted. When that happens, you'll notice a quick temperature rise as the water continues to absorb heat from the inside of the car.
Answer:
17.09g/L
Explanation:
Density = total mass of elements/ volume
We need to find the mass of each mixture constituents using their molar mass:
mole = mass/molar mass
For Neon (Ne) which contains 0.650mol;
0.650 = mass/20.18
mass = 0.650 × 20.18
mass = 13.12g
For Krypton (Kr) which contains 0.321mol;
0.321 = mass/83.79
mass = 0.321 × 83.79
mass = 26.89g
For Xenon (Xe) which contains 0.190mol;
0.190 = mass/131.3
mass = 0.190 × 131.3
mass = 24.95g
Total mass = 13.12g + 26.89g + 24.95g = 64.96g
Density = total mass / volume
Density = 64.96g / 3.80L
Density of the mixture = 17.09g/L