
As depth increases, the density of the layers decreases.
The law of conservation of energy has not been broken, provided energy is released from the fission process.
<h3>What is the law of conservation of energy?</h3>
The law states that the total energy of a process is conserved. That is, the total energy or mass of a system before and after undergoing processing remains the same. However, some of the mass/energy can be converted to another form.
When a material undergoes fission, the sum total of the mass of the particles formed should be equal to the mass of the starting materials, provided that all other things remain the same.
However, if energy is released from the fission process, it means that some of the mass of the starting materials has been converted to energy and released to the environment.
More on the law of conservation of energy can be found here: brainly.com/question/20971995
#SPJ1
The amount of the solute is constant during dilution. So the mole number of HCl is 2*1.5=3 mole. The volume of HCl stock is 3/12=0.25 L. So using 0.25 L stock solution and dilute to 2.0 L.
<u>Answer:</u> The
for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:

The intermediate balanced chemical reaction are:
(1)
( × 2)
(2)
( × 2)
(3)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the
for the reaction is 51.8 kJ.