1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nana76 [90]
3 years ago
13

What is one way kinetic energy might be involved in rescue team missions ?

Physics
2 answers:
coldgirl [10]3 years ago
3 0

ANSWER: Kinetic Energy is the energy of mass in motion. In a rescue mission, kinetic energy is the most used energy to carry out the rescue operation successfully. The energy of the people involved in the rescue mission is a form of kinetic energy. The machineries involved in the rescue mission like helicopters, submarines, lifeboats are all examples of kinetic energy. To sum up, anything that moves and has a role in rescuing the victims can be termed as the kinetic energy involved in rescue team missions.

MrRa [10]3 years ago
3 0

Remember that kinetic energy is something in motion. So maybe one example is the energy in lights or a helicopter, or even people walking around or moving quickly to save others. Think of the boys trapped in the cave in Thailand they were swimming to get out. Hope this helps you!! :)

You might be interested in
A 24-V battery is powering a light bulb with a resistance of 3.0 ohms. What is the current flowing through the bulb? A) 7.20 A B
Usimov [2.4K]

According to Ohm's law for a portion of the circuit we have:

U=RI=>I=U/R=24/3=8 A

The correct answer is  B


3 0
3 years ago
Which could be an example of a balanced force?
Rus_ich [418]

Answer:

An  asteroid moving at a constant speed through space.

Explanation:

4 0
3 years ago
Read 2 more answers
Which would be the most reliable source for information about the toxicity of an industrial chemical?
kvasek [131]
A scientific journal article that is peer reviewed. This is because it is more likely not have factual information and sources to that information.
3 0
3 years ago
Read 2 more answers
For crystal diffraction experiments, wavelengths on the order of 0.25 nm are often appropriate.
Kamila [148]

Answer:

A) E = 4.96 x 10³ eV

B) E = 4.19 x 10⁴ eV

C) E = 3.73 x 10⁹ eV

Explanation:

A)

For photon energy is given as:

E = hv

E = \frac{hc}{\lambda}

where,

E = energy of photon = ?

h = 6.625 x 10⁻³⁴ J.s

λ = wavelength = 0.25 nm = 0.25 x 10⁻⁹ m

Therefore,

E = \frac{(6.625 x 10^{-34} J.s)(3 x 10^8 m/s)}{0.25 x 10^{-9} m}

E = (7.95 x 10^{-16} J)(\frac{1 eV}{1.6 x 10^{-19} J})

<u>E = 4.96 x 10³ eV</u>

<u></u>

B)

The energy of a particle at rest is given as:

E = m_{0}c^2

where,

E = Energy of electron = ?

m₀ = rest mass of electron = 9.1 x 10⁻³¹ kg

c = speed of light = 3 x 10⁸ m/s

Therefore,

E = (9.1 x 10^{-31} kg)(3  x  10^8 m/s)^2\\

E = (8.19 x 10^{-14} J)(\frac{1 eV}{1.6 x 10^{-19} J})\\

<u>E = 4.19 x 10⁴ eV</u>

<u></u>

C)

The energy of a particle at rest is given as:

E = m_{0}c^2

where,

E = Energy of alpha particle = ?

m₀ = rest mass of alpha particle = 6.64 x 10⁻²⁷ kg

c = speed of light = 3 x 10⁸ m/s

Therefore,

E = (6.64 x 10^{-27} kg)(3  x  10^8 m/s)^2\\

E = (5.97 x 10^{-10} J)(\frac{1 eV}{1.6 x 10^{-19} J})\\

<u>E = 3.73 x 10⁹ eV</u>

8 0
3 years ago
A bowling ball that has a radius of 11.0 cm and a mass of 5.00 kg rolls without slipping on a level lane at 2.80 rad/s.
NemiM [27]

Answer:

\dfrac{K_t}{K_r}=\dfrac{5}{2}

Explanation:

Given that,

Mass of the bowling ball, m = 5 kg

Radius of the ball, r = 11 cm = 0.11 m

Angular velocity with which the ball rolls, \omega=2.8\ rad/s

To find,

The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball.

Solution,

The translational kinetic energy of the ball is :

K_t=\dfrac{1}{2}mv^2

K_t=\dfrac{1}{2}m(r\omega)^2

K_t=\dfrac{1}{2}\times 5\times (0.11\times 2.8)^2

The rotational kinetic energy of the ball is :

K_r=\dfrac{1}{2}I \omega^2

K_r=\dfrac{1}{2}\times \dfrac{2}{5}mr^2\times \omega^2

K_r=\dfrac{1}{2}\times \dfrac{2}{5}\times 5\times (0.11)^2\times (2.8)^2

Ratio of translational to the rotational kinetic energy as :

\dfrac{K_t}{K_r}=\dfrac{5}{2}

So, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is 5:2

4 0
3 years ago
Other questions:
  • A water pipe tapers down from an initial radius of R1 = 0.21 m to a final radius of R2 = 0.11 m. The water flows at a velocity v
    7·1 answer
  • Find the current that flows in a silicon bar of 10-μm length having a 5-μm × 4-μm cross-section and having free-electron and hol
    11·1 answer
  • If aluminum loses all 3 electrons how do you write the ion
    12·1 answer
  • A 2.0-cm-thick bar of soap is floating on a water surface
    10·1 answer
  • If a car speeds up and pushes back on the road, what does the road do to the car?
    15·1 answer
  • An unknown liquid has a mass of 30.70 g and a volume of 52.3 mL. What is the density of the liquid?
    7·2 answers
  • Of the 5000 species of mammals, 250 species are carnivorous. What is the ratio of carnivorous to mammals?
    8·1 answer
  • Draw a ray diagram indicating the change in the path of light
    11·1 answer
  • Which event may occur when ocean salinity increases?
    8·2 answers
  • What is mesothermal climates
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!