Answer:
The net gravitational force on the mass is 
Explanation:
We have by Newton's law of gravity the force of attraction between masses 

Applying vales we get
Force of attraction between 135 kg mass and 38 kg mass is

Force of attraction between 435 kg mass and 38 kg mass is

Thus the net force on mass 38.0 kg is 
Well first of all, when it comes to orbits of the planets around
the sun, there's no such thing as "orbital paths", in the sense
of definite ("quantized") distances that the planets can occupy
but not in between. That's the case with the electrons in an atom,
but a planet's orbit can be any old distance from the sun at all.
If Mercury, or any planet, were somehow moved to an orbit closer
to the sun, then ...
-- its speed in orbit would be greater,
-- the distance around its orbit would be shorter,
-- its orbital period ("year") would be shorter,
-- the temperature everywhere on its surface would be higher,
-- if it has an atmosphere now, then its atmosphere would become
less dense, and might soon disappear entirely,
-- the intensity of x-rays, charged particles, and other forms of
solar radiation arriving at its surface would be greater.
Answer:
The think the answer is solar radiation.
Explanation:
here, we gain the heat from the sun through a radiation. When it travels from the sun the harmful radiation are absorbed by ozone layer and heat enegry is provided to the surface of the Earth.
<em>hope</em><em> </em><em>it helps</em><em>.</em><em>.</em>
I think it will be muscle contraction. Hope this helps! Mark brainly please!