150/30 = 5
HF1 20/2 = 10
HF2 10/2 = 5
HF3 5/2 = 2.5
HF4 2.5/2 = 1.25
HF5 1.25/2 = 0.625
Answer: 0.63g
True!
Energy released by system is absorbed by surroundings.
Explanation:
Answer
Open in answr app
The rule used here is that the algebraic sum of the oxidation numbers of all the atoms a molecule is zero.
Al2O32× ( oxidation number of Al)+3× ( Oxidation number of O ) = 0
2× ( Oxidation number of Al) +3(−2)=0
2× ( oxidation number of Al) +6
∴ Oxidation number of Al =+3
The answer is <span>C. Glucose is an organic molecule.
Glucose is carbohydrate so it cannot be a protein or a nucleic acid. It is an organic molecule. The organic molecule is compound consisting of carbon to which are attached hydrogen, oxygen, and nitrogen. Since, g</span><span>lucose is a simple sugar made up of carbon, hydrogen, and oxygen, it, as well as any other carbohydrate, is the organic molecule.</span>
Answer:
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
Explanation:
According to the Kelvin–Planck statement of the second law of thermodynamics ,it is not possible to construct a device which operates in cycle and does not produce effect on the environment than the production of work.
We know that
Coefficient of performance is the ratio of desired effect to the work input in a cycle.
Given all option is correct but most appropriate option is a.
So the option a is correct
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.