Answer:
1.74 m/s
Explanation:
From the question, we are given that the mass of the an object, m1= 2.7 kilogram(kg) and the mass of the can,m(can) is 0.72 Kilogram (kg). The velocity of the mass of an object(m1) , V1 is 1.1 metre per seconds(m/s) and the velocity of the mass of can[m(can)], V(can) is unknown- this is what we are to find.
Therefore, using the formula below, we can calculate the speed of the can, V(can);
===> Mass of object,m1 × velocity of object, V1 = mass of the can[m(can)] × velocity is of the can[V(can)].----------------------------------------------------(1).
Since the question says the collision was elastic, we use the formula below
Slotting in the given values into the equation (1) above, we have;
1/2×M1×V^2(initial velocity of the first object) + 1/2 ×M(can)×V^2(final velocy of the first object)= 1/2 × M1 × V^2 m( initial velocity of the first object).
Therefore, final velocity of the can= 2M1V1/M1+M2.
==> 2×2.7×1.1/ 2.7 + 0.72.
The velocity of the can after collision = 1.74 m/s
Answer:
<h2>1.5 ohms</h2>
Explanation:
Power is expressed as P = V²/R
R = resistance
V = supplied voltage
Given P = 600W and V = 30V
R = V²/P
R = 30²/600
R = 900/600
R = 1.5ohms
magnitude of its resistance is 1.5ohms
Answer:
3.08m/s²
Explanation:
Given parameters:
Radius = 20m
Tangential velocity = 7.85m/s
Unknown:
Centripetal acceleration = ?
Solution:
Centripetal acceleration is the acceleration of a body along a circular path.
it is mathematically given as;
a =
v is the tangential velocity
r is the radius
a =
= 3.08m/s²
Answer: The correct answer is option b.
Explanation: We are given that the rocket is at rest initially final velocity is 445m/s.
The acceleration of the rocket is 
To calculate the distance of rocket, we use third equation of motion, which is:

where, v = final velocity = 445m/s
u = initial velocity = 0m/s
a = acceleration = 
s = distance = ? m
Putting values in above equation, we get:

Answer:
The Sun's energy gets to the Earth through radiation, which you can prove just by standing outside and letting the sun's rays warm your face on a sunny day. Every object around you is continually radiating unless its temperature is at absolute zero, at which point its molecules completely stop moving.
Hope that helps :)