C: the mechanical energy isn't conserved. Some energy was lost to friction.
To solve this problem we will apply the concepts related to the conservation of momentum. This can be defined as the product between the mass and the velocity of each object, and by conservation it will be understood that the amount of the initial momentum is equal to the amount of the final momentum. By the law of conservation of momentum,

Here,
= Mass of Basketball
= Mass of Tennis ball
= Initial velocity of Basketball
= Initial Velocity of Tennis ball
= Final velocity of Basketball
= Final velocity of the tennis ball
Replacing,

Solving for the final velocity of the tennis ball

Therefore the velocity of the tennis ball after collision is 11 m/s
Answer:
F = 1,875 N
Explanation:
force=

∆H = m∆V
where ∆H ----> change in momentum.
( final momentum - initial momentum )
and ∆V ----> change in velocity
( final velocity - initial velocity )
and m ----> is mass
then f =

= 1,875 N
Answer:
An apple in free fall accelerates toward the Earth with a free fall acceleration, g. The force of the apple on the Earth also causes the Earth to accelerate toward the falling apple. By Newton's Third Law, the force of the Earth on the apple is exactly equal and opposite to the force of the apple on the Earth. By Newton,s Second law, the force of the Earth on the apple is equal to the mass of the apple times g , the accelerations due to gravity. And, the force of the the apple on the Earth is equal to the mass of the Earth times the acceleration of the Earth toward the apple. In conclusion, the magnitude of the forces are equal, or
F ( apple on the Earth) = F( the Earth on the apple) or
M( mass of the earth) x a( the acceleration of the earth toward the apple) = m(mass of the apple) x g( the acceleration of the apple toward the Earth) or
a = (m/M) g
Explanation: