How about putting one battery in the freezer while putting another by a radiator or something that gives off heat. Leave them for an hour, then place them in an object that uses batteries and time how long it takes for it to die: Note: It may take many hours for the battery to fully deplete.
V2 = 250 ml
Explanation:
Given:
P1 = 0.99 atm. V1 = 240 ml
P2 = 0.951 atm. V2 = ?
We can use Boyle's law to solve for V2
P1V1 = P2V2
V2 = (P1/P2)V1
= (0.99 atm/0.951 atm)(240 ml)
= 250. ml
The number of moles of gas lost is 0.0213 mol. It can be solved with the help of Ideal gas law.
<h3>What is Ideal law ?</h3>
According to this law, "the volume of a given amount of gas is directly proportional to the number on moles of gas, directly proportional to the temperature and inversely proportional to the pressure. i.e.
PV = nRT.
Where,
- p = pressure
- V = volume (1.75 L = 1.75 x 10⁻³ m³)
- T = absolute temperature
- n = number of moles
- R = gas constant, 8.314 J*(mol-K)
Therefore, the number of moles is
n = PV / RT
State 1 :
- T₁ = (25⁰ C = 25+273 = 298 K)
- p₁ = 225 kPa = 225 x 10³ N/m²
State 2 :
- T₂ = 10 C = 283 K
- p₂ = 185 kPa = 185 x 10³ N/m²
The loss in moles of gas from state 1 to state 2 is
Δn = V/R (P₁/T₁ - P₂/T₂ )
V/R = (1.75 x 10⁻³ m³)/(8.314 (N-m)/(mol-K) = 2.1049 x 10⁻⁴ (mol-m²-K)/N
p₁/T₁ = (225 x 10³)/298 = 755.0336 N/(m²-K)
p₂/T₂ = (185 x 10³)/283 = 653.7102 N/(m²-K)
Therefore,
Δn = (2.1049 x 10⁻⁴ (mol-m²-K)/N)*(755.0336 - 653.7102 N/(m²-K))
= 0.0213 mol
Hence, The number of moles of gas lost is 0.0213 mol.
Learn more about ideal gas here ;
https://brainly.in/question/641453
#SPJ1
Answer:
50
Explanation:
If you want a percent as a decimal so you can divide you must make it a decimal for example in your case it would be like this, 0.05, then all you do is divide 1,000 by 0.05