A volcanic <em>eruption</em> occurs when the <em>pressure </em> in a magma <em>chamber</em> becomes so great it is released like a valve. Magma is released through the volcano's <em>cone</em> in an eruption of <em>lava</em> rocks (bombs) and ash. A volcanic <em>cone</em> develops over centuries as flowing <em>lava</em> from the active volcano <em>cools </em>to form layers of rock.
Hope this works,
Ahawk
The equilibrium expression shows the ratio
between products and reactants. This expression is equal to the concentration
of the products raised to its coefficient divided by the concentration of the
reactants raised to its coefficient. The correct equilibrium expression for the
given reaction is:<span>
<span>H2CO3(aq) + H2O(l)
= H3O+(aq) + HCO3-1(aq)
Kc = [HCO3-1] [H3O+] / [H2O] [H2CO3]</span></span>
Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
Answer #1 is "there is 2.5 grams of solute in every 100 g of solution."
We calculate for 2.5% by mass solution by dividing the mass of the solute by the mass of the solution and then multiply by 100.
Answer #2 is "that mass ratio would be 2.5/100 or 2.5 grams of solute/100 grams of solution."
We weigh out 2.5 grams of solute and then add 97.5 grams of solvent to make a total of 100 gram solution, that is,
mass of solute / mass of solution = 2.5g solute / (2.5g solute + 97.5g solvent)
= 2.5g solute / 100g solution
Answer#3 is "a solution mass of 1 kg is 10 times greater than 100 g, thus one kilogram (1 kg) of a 2.5% ki solution would contain 25 grams of ki."
We multiply 10 to each mass so that 100 grams becomes 1000grams since 1000 grams is equal to 1 kg:
mass of solute / mass of solution = 2.5g*10/[(2.5g*10) + (97.5g*10)]
= 25g solute/(25g solute + 975g solvent)
= 25g solute/1000g solution
= 25g solute/1kg solution
Answer:
Its Obviously Dinosaurs
Explanation: They died 65 million years ago