Answer:
Low power
Explanation:
Low power would allow for the full image of the red blood cells and would appear as small circles.
Easy it’s 86 so the third option
Answer:
Such molecule must have molecular formula of C15N3H15
Explanation:
Mass of carbon in such molecule

The atomic mass of carbon is 12.01 g/mol, so in 182.28 g of carbon there is 15.18 mols of carbon.
Mass of Nitrogen in such molecule

The atomic mass of nitrogen is 14.01 g/mol, so in 42.53g of nitrogen there is 3.04 mols of nitrogen.
Mass of Hydrogen in such molecule

The atomic mass of Hydrogen is 1.00 g/mol, so in 15.19 g of Hydrogen there is 15.19 mols of Hydrogen.
Such molecule must have molecular formula of C15N3H15
Answer: 10
Explanation:
The detailed solution is contained in the image attached. The molar mass of hydrated and anhydrous salts are obtained and the number of moles of hydrated and hydrated salts are equated. The masses of hydrated and anhydrous salts are gives in the question and are simply substituted accordingly. This can now be used to obtain the number of molecules of water of crystallization as required in the question.
Answer:
37.25 grams/L.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved per 1.0 L of the solution.
<em>M = (no. of moles of KCl)/(volume of the solution (L))</em>
<em></em>
∵ no. of moles of KCl = (mass of KCl)/(molar mass of KCl)
∴ M = [(mass of KCl)/(molar mass of KCl)]/(volume of the solution (L))
∴ (mass of KCl)/(volume of the solution (L)) = (M)*(molar mass of KCl) = (0.5 M)*(74.5 g/mol) = 37.25 g/L.
<em>So, the grams/L of KCl = 37.25 grams/L.</em>