Answer:
Explanation:
You would have to add up the atomic masses of all the compounds in the compound, making sure you include how many molecules of each are in the compound
For example, in CuSOA we have 1 molecule of Cu and S, as 4 molecules of O
The atomic masses are as follows:
Cu = 63.55 u
S = 32.065 u
O = 15.99 units
This is how we would add it up:
(Atomic mass of Cu) + (Atomic mass of S) + 4(Atomic Mass of O)
(63.55) + (32.065) + 4(15.99)
(63.55) + (32.065) + 63.96
= 159.575 u
Since all of those percents add up to 100, you can just directly convert that to grams. So now you can use 2 grams H, 32.7 grams S, and 65.3 grams O. Use that info and convert that to moles for an answer of 2mol H, 1mol S, and 4mol O. In every empirical question you need to divide each quantity of moles by the lowest number. In this case, that number is one, so they stay the same, but it's important to remember that step. You're final chemical formula would be H2SO4 and the answer to your question would be that the subscript for oxygen is 4. Hope this helped!
Answer:
D (or E If properly listed to include the active site option)
Explanation:
A. Is true
Enzymes are organically biochemical catalyst and thus they can speed up the rate of chemical reaction in the body
B is true
They are catalysts as said earlier
C is true
They have active sites. An enzyme does not act on all substrates. They have particular group on which they can act. For example, we have carbohydrates enzymes that act on carbohydrates substrate only. This enzymes have no business acting on a protein substrate.
D. Enzymes are proteins
One of the important characteristics of enzymes is that they are protenious in nature
E. This is wrong. Enzymes like any over catalyst are not consumed in the course of the biochemical reaction
Answer:
Combination reaction or synthesis reaction
Explanation:
Given reaction:
CO + H₂O → H₂CO₃
The type of reaction shown above is a combination or synthesis reaction. A combination reaction is one in which a single product is formed from two or more reactants.
In the given reaction carbon monoxide combines with water to produce hydrogen carbonate.
The formation of compounds from the union of their constituent elements falls into this category of reactions.