Answer:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
Explanation:
Chemical equation:
CO + O₂ → CO₂
Balanced chemical equation:
2CO + O₂ → 2CO₂
The standard enthalpy for the formation of CO = -110.5 kj/mol
The standard enthalpy for the formation of O₂ = 0 kj/mol
The standard enthalpy for the formation of CO₂ = -393.5 kj/mol
Now we will put the values in equation:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol + 0]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol]
ΔH0reaction = -283 kj/mol
Answer:
The hydrolysis in aqueous HCl of compound A can lead to the formation of a carboxylic acid and an alcohol.
Explanation:
The picture shows the structures of compound A, benzoncaine and the possible products of the proposed reaction.
The acidic hydrolysis is the inverse of the esterification reaction. Therefore, the ester group of compund A will react to form the equivalent carboxylic acid and alcohol.
In order to form benzocaine, the hydrolysis happens in with the nitrile group.
(1) False, lots of energy is actually produced from nuclear fuel, if we didn't get much then we probably wouldn't use it
(2) False, its burning coal that contributes to acid rain, since it contains sulfur
(3) False again, we can control the reaction with aptly named control rods, which are typically made of boron, to absorb some of the neutrons flying around in the chain reaction
(4) True, radioactive waste is very difficult to dispose of, and is also very dangerous. Sources of radiation can remain so for millions of years
It is B because horn coals are bigger and I read it in a book