Answer:
Answer: The solubility of B is high than the solubility of A.
Explanation:
The solubility is defined as the amount of substance dissolved in a given amount of solvent. More the solute gets dissolved, high will be the solubility and less the solute dissolved, low will be the solubility.
Mass of undissolved substance of substance A is more than Substance B at every temperature. This implies that less amount of solute gets dissolved in the given amount of solvent.
Therefore, B has high solubility than substance A.
hydrogen and carbon, hope that helped
Answer:
A generator produces electricity and an electric motor consumes electricity
Answer:
-30.7 kj/mol
Explanation:
The standard free energy for the given reaction that is the hydrolysis of ATP is calculated using the formula: ∆Go ’= -RTln K’eq
where,
R = -8.315 J / mo
T = 298 K
For reaction,
1. K′eq1=270,
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 270
= - 8.315 x 298 x 5.59
= - 13,851.293 J / mo
= - 13.85 kj/mol
2. K′eq2=890
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 890
= - 8.315 x 298 x 6.79
= - 16.82 kj/mol
therefore, total standard free energy
= - 13.85 + (-16.82)
= -30.7 kj/mol
Thus, -30.7 kj/mol is the correct answer.
Answer:
b) Phosphorus acid
Explanation:
To distinguish the type of acid of phosphorus with the oxidation state of +3, we need to be familiar with the chemical formula of each of the compounds:
Orthophosphoric acid H₃PO₄
Phosphorus acid H₃PO₃
Metaphosphoric acid HPO₃
Phyrophosphoric acid H₄P₂O₇
Now that we know the formula of the given compounds, the algebraic sum of all the oxidation numbers of all atoms in a neutral compound is zero:
Only phosphorus acid yielded an oxidation state of +3 for phosphorus in the compound.
H₃PO₃:
we know the oxidation state of H = +1
O = -2
The oxidation state of P is unknown. We can express this as an equation:
3(+1) + P + 3(-2) = 0
3 + P -6 = 0
P-3 = 0
P = +3