Answer:
Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Explanation:
Mass of object 1 , m₁ = 300 g = 0.3 kg
Mass of object 2 , m₂ = 400 g = 0.4 kg
Initial velocity of object 1 , v₁ = 5.00i-3.20j m/s
Initial velocity of object 2 , v₂ = 3.00j m/s
Mass of composite = 0.7 kg
We need to find final velocity of composite.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = 0.3 x (5.00i-3.20j) + 0.4 x 3.00j = 1.5 i + 0.24 j kgm/s
Final momentum = 0.7 x v = 0.7v kgm/s
Comparing
1.5 i + 0.24 j = 0.7v
v = 2.14 i + 0.34 j
Magnitude of velocity

Direction,

Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Answer:
a=2500J,b=1000K,c=1000J,d=14.142m/s
Explanation:
V²=U²+2gh
V²=0 + 2×10×10=200m/s
a).kinetic energy=(1/2)mv²=(1/2)25×200=2500
potential energy=mgh
p.e=25×10×10=2500J
pe+ke=2500+2500=5KJ
b).mgh=25×10×4=1000J
c). V²=U²+2gh
V²=0+2×10×4
V²=80
kinetic energy=(1/2)mv²
=(1/2)25×80
=1KJ
d). From my first paragraph V²=200
V=√200
V=14.142m/s
Answer:54 kj
Explanation:P1 = P2 = 1000 kPa
1Q2 = 84 kJ
1W2 = P1 (V2 – V1)
= 1000 (0.06 – 0.03) = 30 kJ
1Q2 = 1W2 + 1U2
U2 – U1= 1Q2 – 1W2 = 84 – 30 = 54 kJ
Answer: 3 Amperes
Explanation:
Voltage of battery = 24 volts
R1 = 3Ω
R2 = 5Ω
Total resistance = ?
Current, I = ?
Since the resistors are connected in series, the total resistance (Rtotal) of the circuit is the sum of each resistance.
i.e Rtotal = R1 + R2
Rtotal = 3Ω + 5Ω = 8Ω
Now recall that voltage = current x resistance
i.e V = I x Rtotal
24volts = I x 8Ω
I = 24 volts / 8Ω
I = 3 amperes
Thus, there is 3 Amperes of current in the circuit