Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.
Explanation:
Since, it is given that the magnet drops and falls lengthwise towards the canter of the ring. As a result, change in magnetic flux will occur which tends to induce an electric current in the ring.
Therefore, a magnetic field is also produced by the ring itself which will actually oppose or repel the magnet.
Thus, we can conclude that the falling magnet be repelled by the ring due to the magnetic interaction of the magnet and the ring.
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions